京公网安备 11010802034615号
经营许可证编号:京B2-20210330
文章来源: 丁点帮你
作者:丁点helper
两组独立样本的非参数检验与其t检验相对,主要是用于不满足正态分布的小样本,一般用Wilcoxon秩和检验,又称Mann-Whitney 检验。
这里我们想指出一点的是,人们往往对正态性的关注更多一些,其实样本量也很重要,这里是样本量较小的情形,如果样本量足够大(比如超过40),即使正态性不满足,也可以使用t检验,而且更推荐用t检验。
案例:在某小学随机采集12岁男童和女童各10名的头发样品,检测发样中钙(Ca)含量(μg/g),数据见下表。男童与女童头发中Ca含量有无差异?
上述数据经过正态性检验,P<0.05,此时认为数据不符合正态分布,即男童组与女童组的数据均不服从正态分布;又因为样本量合计仅有20,所以可采用非参数秩和检验。
下面,我们简单说说这其中的基本思想:
和之前讲解的单样本及配对样本秩和检验一致,这里都需要先编制求秩和,然后用秩和进行检验统计量的计算。
比如,随机抽取样本量分别为n1和n2的两个独立样本,要先将全部数据统一编秩,注意是两组混合起来统一编制。
如上表,就是将男童与女童混合在一起进行编制,然后分组计算秩和。
这里,相当于对原始数据进行了秩变换,即用秩数据代替原始数据进行分析,从而不受原始数据需满足正态分布的条件限制。
如果上述女童组的Ca含量原始数据高于男童组,则女童组Ca含量的秩和也大概率会高于男童组。
我们说过,编秩就是数数,这里一共有20个样本,总秩和加起来为210(就是从1加到20:用中学的公式,首位相加乘以项数除以2)。
如果满足假设,两组儿童Ca含量没有差异,那么两组的秩和大概率都等于105(210的一半)。
以上是基本的思路,严格来讲,检验是在计算秩和后,取任意一组样本(如男童)的秩和(R1=77)作为Wilcoxon秩和检验统计量W,在H0假设成立情况下,则W的均数和标准差分别等于:
当W远离其均数时,则有理由拒绝零假设,认为两组有差异。
比如本例W=77(男童的秩和),比 小约2倍标准差:(77-105)/13.229=-2.116,所以,粗略判断,两组数据应该是有差异的。
这里关于W统计量均数和标准差的计算可以不用特别关注,主要是理解整个思想过程,具体的计算都会交由软件来做。
上述案例标准的检验的步骤总结如下:
(1) 建立检验假设,确定检验水准
H0:男童与女童头发中Ca含量的总体分布相同
H1:男童与女童头发中Ca含量的总体分布不同
a=0.05
(2) 编秩、求秩和
先将男童组与女童组发样中Ca含量的数值由小到大统一编秩,将两组秩分别相加得每组秩和。
(3) 计算检验统计量
本例W=77,Z=-2.116。
(4) 确定P值,作出推断
本例P=0.034,按α=0.05 水准拒绝H0 ,接受H1 ,可以认为男童与女童的头发中Ca含量差异有统计学意义。男童组平均秩为77/10=7.7,女童组平均秩为133/10=13.3,可认为女童的头发中Ca含量高于男童。
另外,值得指出的是,在实际应用中,有一些数据是用离散尺度表达的,什么意思?
比如对于疼痛的评分,研究者会将疼痛用0至10个数据表示,0表示无痛、10表示最痛,研究对象需要根据自身的疼痛程度在这11个数字中挑选一个数字代表疼痛程度。
当用此类数据进行秩和检验,常常会出现很多相同秩,这个时候,检验统计量的计算会略有差别,这个大家稍微留意,不过一般统计软件在分析时会自动调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16