京公网安备 11010802034615号
经营许可证编号:京B2-20210330
折线图大家都能绘制,那么堆积折线图呢?想知道?下面就一起来看如何用matplotlib绘制堆积折线图吧!
一、什么是堆积折线图
堆积折线图一般用于表示每一数值所占大小,随着时间或有序类别的变化而变化的趋势,有可能显示数据点用来表示单个数据值,也可能不显示这些数据点。若有很多类别或数值是近似的,那么就应该使用无数据点堆积折线图。
可以简单理解为:
假如有两个数据系列,在折线图中这两个数据系列是独立的;而在堆积折线图中,第一个数据系列和折线图中显示的是相同的,而第二个数据系列的值要与第一个数据系列的值在同一分类(或时间上)进行累计,这样能够显示出两个数据系列在同一分类(或时间上)的值的总和的发展变化趋势情况。
二、matplotlib绘制堆积折线图
'''堆积折线图''' '''用函数stackplot()绘制堆积折线图''' import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np mpl.rcParams["font.sans-serif"]=["SimHei"] mpl.rcParams["axes.unicode_minus"]=False x=np.arange(1,6,1) y=[0,4,3,5,6] y1=[1,3,4,2,7] y2=[3,4,1,6,5] labels=["BluePlanet","BrownPlanet","GreenPlanet"] colors=["#8da0cb","#fc8d62","#66c2a5"] plt.stackplot(x,y,y1,y2,labels=labels,colors=colors) plt.legend(loc="upper left") plt.show()
'''用函数broken_barh()绘制间断条形图''' plt.broken_barh([(30,100),(180,50),(260,70)],(20,8),facecolors="#1f78b4") plt.broken_barh([(60,90),(190,20),(230,30),(280,60)],(10,8),facecolors=("#7fc97f","#beaed4","#fdc086","#ffff99")) plt.xlim(0,360) plt.ylim(5,35) plt.xlabel("演出时间") plt.yticks([15,25],["歌剧院A","歌剧院B"]) plt.grid(ls='-',lw=1,color="gray") plt.title("不同地区的歌剧院的演出时间比较") plt.show()
'''用step()绘制阶梯图''' x=np.linspace(1,10,10) y=np.sin(x) plt.step(x,y,color="#8dd3c7",where="pre",lw=2) plt.xlim(0,11) plt.ylim(-1.2,1.2) plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20