百度上有篇热文,探讨如今老板嘴巴有多臭,暴露出一个困境,就是用人单位越来越挑剔,面试机会难得,有了面试也很难……即便拿到offer成功入职,身处竞争激烈的职场,不学一两门新技能,让自己时刻保持“新鲜”,也易遭遇淘汰的命运。
有人学习一门外语,也有人选择职场人际关系课程,更有人专注于团队管理学……
那么,职场牛人们都会哪些必杀术?小编以数据分析行业为例,通过梳理10W+数据分析师招聘信息,整理出企业需求技能排行榜TOP5,一起来围观吧。
部分招聘信息一览
——技能“牛”榜
一旦具备这些技能,必定能在职场中,脱颖而出。接下来,我们一条条解析。
▽
1、状元:Python
一门动态、面向对象的脚本语言,也是入门简单、通俗易懂的编程语言。
一段好的Python代码,阅读时就像在读一篇外语文章,这种特性称为“伪代码”,这种优势使学习者只用关心完成什么样的工作任务,而不必去纠结语言的命令语法。
python一段代码示例
另外,python在网络爬虫、办公自动化(报表处理、邮件处理、文件格式批量转换等)、数据分析、各种资源批量下载、自动化运营监控、软件和游戏开发、人工智能等领域都有突出表现。
这种计算机语言让困难的事情变得容易,除助力程序员外,亦可大幅提升普通人职业技能的实力,帮他们拿高薪。
资料来源 / ITPUB博客
python受欢的迎程度,俨然已让它成为各行从业人员的职场标配技能,难怪能居牛逼人技能首位。
2、榜眼:SQL
SQL在各领域内地位都很高,尤其在数据分析行业,它是每个人都需要掌握的,可助从业者打开数据分析探索的大门。
因此,SQL的身影随处可见,只要你和数据打交道,必定会接触它。在系列数据分析培训课程中SQL也极为常见,是引领着你发现数据分析之美的基石。
3、探花:Excel
Excel是常见且使用率较高的工具,职场人或多或少都接触过,知名度可谓家喻户晓。
然而,随着大数据、商务智能等需求快速膨胀,Excel出现了一些局限性,如:繁琐的操作、交互性差、数据量大就宕机等。
不过,经典毕竟是经典,Excel从未退出舞台,而是结合如:powerBI、Python等数据分析利器,发展出了更加高阶的技能,彰显出不可动摇的地位。
Excel结合powerBI的神操作:
① 快速创建交互式仪表板
将Excel模型和报表导入Power BI,可快速创建令人惊叹的交互式仪表板,无需学程序或语言。
来源:Microsoft官网
② 快速应对各种临时分析
使用Power BI数据进行临时分析,无需像Excel反复手动处理,单击一次便可直接数据模型,创建功能强大的数据透视表和图表。
③ 单一视图中多元化展示
与普通Excel工作簿无缝对接,结合多方数据来源,仪表板可显示一系列数据和图表。
来源:Microsoft官网
④ 获取自助式数据可视化
将Excel数据模型扩展到Power BI报表,获取丰富交互式可视化效果,让不懂Excel的同事和老板,能轻松理解,作为决策依据。
⑤ 在模型中添加高级分析
通过简单脚本运行,即可在Power BI中获取高级分析工作流的高级自定义可视化、建模和预测性功能。
4、进士:PowerBI
为快人一步做出供领导层商业决策的报表,商业智能数据分析技术powerBI应运而生,完美契合各种业务场景,稳坐全场。
Power BI通过思维方法、指标体系、工具模型等,来支持市场分析、产品优化、客户洞察,精准发现问题并提出高效解决方案,帮企业获取更多商业利润。
powerBI的魅力大家必早有耳闻,其数据可视化表现力十足,脉络清晰,画面感震撼,交互性极佳。
5、举人:Tableau
Tableau看似高冷,实则是任何人都能使用的智能商业分析工具,可直观明了拖放产品,无需编程即可深入分析,帮大家查看并理解数据。
另外,Tableau兼容性强,无论是电子表格、数据库,还是 Hadoop、云服务,任何数据都可轻松探索,数分钟内完成数据连接和可视化。
这5项技能,可提升核心竞争力。助你在职场如鱼得水,只要掌握其中一门,既能避开各种危机,轻松职场打怪!
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20