作者:Jared P. Lander
来源:大数据DT(ID:hzdashuju)
编自:《R语言:实用数据分析和可视化技术》(原书第2版)
读取CSV文件最好的方法是使用read.table函数,许多人喜欢使用read.csv函数,该函数其实是封装的read.table函数,同时设置read.table函数的sep参数为逗号(",")。read.table函数返回的结果为data.frame。
read.table函数的第一个参数为文件所在路径,可以是本地文件,也可以是网页上的文件。本书主要是从网页读取文件。
任意CSV文件都可以读取,这里使用read.table函数读取一个简单的文件(地址如下):
http://www.jaredlander.com/data/TomatoFirst.csv
> theUrl <-"http://www.jaredlander.com/data/TomatoFirst.csv" > tomato <-read.table(file=theUrl, header=TRUE, sep=",")
利用head命令,我们可以看到下面的结果。
> head(tomato)
如前面所述,第一个参数是文件名(或字符型变量)。注意我们如何显式地使用参数名file、head和sep。函数的参数能够按位置顺序赋值,而不用显式指定参数名,但指定参数名是最佳实践。
第二个参数header,表示数据的第一行,即列名。第三个参数sed,表示数据的分隔符。可以设为“\t”(tab分隔符)或者“;”(分号分隔符),以读取不同类型的文件。
常用但不被熟知的参数是stringAsFactors。将该参数设为FALSE(默认是TRUE)可使字符所在列不被转换成factor列。这样既节省计算时间(当大数据集包含许多字符列,也意味着有许多唯一值),又能保留列为字符。
stringAsFactors参数也可以用在data.frame中。再次创建“Sport”列。
> x <- 10:1 > y <- -4:5 > q <- c("Hockey", "Football", "Baseball", "Curling", "Rugby", + "Lacrosse", "Basketball", "Tennis", "Cricket", "Soccer") > theDF <-data.frame(First=x, Second=y, Sport=q, stringsAsFac=FALSE) > theDF$Sport
read.table函数还有许多参数,最常用的是quote和colClasses参数,分别设置字符的包围符和每列的数据类型。
类似read.csv函数,也有其他用于read.table的封装函数,也有默认参数。它们主要的区别是sep和dec参数。详细情况见表6-1。
▲表6-1 读取大文本文件的函数及其默认参数
大文件使用read.table函数读取到内存比较慢,幸运的是有解决方案。读取大CSV文件和其他文本文件的两个主流的函数是read_delim和fread,前者在readr包中由Hadley Wickham实现,后者在data.table包中由Matt Dowle实现。read_delim和fread运行相当快,因为两者都不把字符数据自动转换成factor。
01、 read_delim函数
readr包提供读取文本文件的一系列函数。最常用的是read_delim函数,读取有分隔符的文件,比如CSV文件。该函数的第一个参数是读取的文件路径或者URL。col_names默认为TRUE,指定文件的第一行为列名。
> library(readr) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato2 <- read_delim(file=theUrl, delim=',') Parsed with column specification: cols( Round = col_integer(), Tomato = col_character(), Price = col_double(), Source = col_character(), Sweet = col_double(), Acid = col_double(), Color = col_double(), Texture = col_double(), Overall = col_double(), `Avg of Totals` = col_double(), `Total of Avg` = col_double() )
read_delim函数执行后会打印列名和数据类型信息,这些信息也可以使用head.read_delim函数获得。
readr包中的所有数据提取函数返回的是tibble,该数据类型是data.frame的扩展。最明显的变化是打印的元数据,比如行列数和每列的数据类型。tibble会适应屏幕大小打印相应条数的行列数据。
> tomato2
read_delim函数不仅仅读取速度比read.table函数快,而且不需要设置stringAsFactors参数为FALSE。read_csv、read_csv2和read_tsv函数是read.table函数分隔符分别为逗号(,)、分号(;)和tab(\t)的特殊情况。
注意,数据读取为tbl_df对象,它是tbl的扩展,也是data.frame的扩展。tbl是data.frame的特殊类型,它在dplyr包中定义。每列的数据类型显示在列名的下面,这是个很好的功能。
readr包有一些对read_delim函数封装(预置分隔符)的辅助函数,比如read_csv函数和read_tsv函数。
02 、fread函数
另一个读取大量数据的函数是data.table包的fread函数。第一个参数是读取的文件路径或者URL。header参数表示文件的第一行是列名,sep指定分隔符。该函数的stringAsFactors参数默认设为FALSE。
> library(data.table) > theUrl <- "http://www.jaredlander.com/data/TomatoFirst.csv" > tomato3 <- fread(input=theUrl, sep=',', header=TRUE)
这里也可以使用head函数查看前几行数据:
> head(tomato3)
该函数读取速度比read.table函数快,结果为data.table对象。data.table对象是data.frame的扩展,其是data.frame的优化。
read_delim或者fread函数读取文件都非常快,具体使用哪个函数取决于dplyr或者data.table包中哪个更适合数据处理。
关于作者:贾里德 P. 兰德(Jared P. Lander),资深数据专家,Lander Analytics公司创始人兼CEO,纽约开放统计编程聚会负责人,哥伦比亚大学统计学兼职教授。在数据管理、多层次模型、机器学习、广义线性模型、可视化、数据管理和统计计算等多个领域拥有丰富经验。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20