热线电话:13121318867

登录
2018-10-23 阅读量: 910
spark streaming 读取kafka数据的两种方式

这两种方式分别是:

Receiver-base

使用Kafka的高层次Consumer API来实现。receiver从Kafka中获取的数据都存储在Spark Executor的内存中,然后Spark Streaming启动的job会去处理那些数据。然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据。如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的预写日志机制(Write Ahead Log,WAL)。该机制会同步地将接收到的Kafka数据写入分布式文件系统(比如HDFS)上的预写日志中。所以,即使底层节点出现了失败,也可以使用预写日志中的数据进行恢复。

Direct

Spark1.3中引入Direct方式,用来替代掉使用Receiver接收数据,这种方式会周期性地查询Kafka,获得每个topic+partition的最新的offset,从而定义每个batch的offset的范围。当处理数据的job启动时,就会使用Kafka的简单consumer api来获取Kafka指定offset范围的数据。

0.0000
3
关注作者
收藏
评论(0)

发表评论

暂无数据
推荐帖子