梯度下降:
首先来看看梯度下降的一个直观的解释。比如我们在一座大山上的某处位置,由于我们不知道怎么下山,于是决定走一步算一步,也就是在每走到一个位置的时候,求解当前位置的梯度,沿着梯度的负方向,也就是当前最陡峭的位置向下走一步,然后继续求解当前位置梯度,向这一步所在位置沿着最陡峭最易下山的位置走一步。这样一步步的走下去,一直走到觉得我们已经到了山脚。当然这样走下去,有可能我们不能走到山脚,而是到了某一个局部的山峰低处。
从上面的解释可以看出,梯度下降不一定能够找到全局的最优解,有可能是一个局部最优解。当然,如果损失函数是凸函数,梯度下降法得到的解就一定是全局最优解。

这一过程形象的描述了梯度下降法求解无约束最优化问题的过程,下面我们将例子里的关键信息与梯度下降法中的关键信息对应起来:山代表了需要优化的函数表达式;山的最低点就是该函数的最优值,也就是我们的目标;每次下山的距离代表后面要解释的学习率;寻找方向利用的信息即为样本数据;最陡峭的下山方向则与函数表达式梯度的方向有关,之所以要寻找最陡峭的方向,是为了满足最快到达山底的限制条件;细心的读者可能已经发现上面还有一处加粗的词组:某处——代表了我们给优化函数设置的初始值,算法后面正是利用这个初始值进行不断的迭代求出最优解。
看到这里大家应该会发现这样一个问题:在选择每次行动的距离时,如果所选择的距离过大,则有可能偏离最陡峭的方向,甚至已经到达了最低点却没有停下来,从而跨过最低点而不自知,一直无法到达山底;如果距离过小,则需要频繁寻找最陡峭的方向,会非常耗时。要知道,每次寻找最陡峭的方向是非常复杂的!同样的,梯度下降法也会面临这个问题,因此需要我们找到最佳的学习率,在不偏离方向的同时耗时最短。

著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。








暂无数据