设矩阵,其中X、Y均为方阵,且Y为对称矩阵。
1. 输入数据:matrix(2,2) X 括号里为矩阵的行数、列数
matrix(2,2) Y
点开矩阵,输入数据。
输入对称矩阵也可以用:sym(2) A
sym(2) B 设
2. 矩阵转置:matrix tx=@transpose(x)
3. 矩阵加减:matrix z1=X-Y
matrix z2=X+Y
4. 矩阵乘法:
数乘:matrix z3=2*X
matrix z4=2*X-3*Y
矩阵相乘:matrix z5=x*y 注意矩阵相乘的条件,可以用转置进行转换
5. 求逆:matrix Xinv=@inverse(X)
6. 求行列式:scalar Xdet=@det(X)
7. 求迹:scalar Xtrace=@trace(X)
8. 求秩:scalar Xrank=@rank(X)
9. 求特征值(Eviews中要求sym才可计算特征值和特征向量):
vector vA=@eigenvalues(A)
vector vB=@eigenvalues(B)
10. 求特征向量(Eviews中要求sym才可计算特征值和特征向量):
matrix mmA=@eigenvectors(A)
matrix mmB=@eigenvectors(B)
11. 求内积(两个向量间):vector ab=@transpose(vA)*vB
【matrix矩阵,sym对称矩阵,vector列向量,Rowvector行向量,scalar标量/数】








暂无数据