多重共线性(Multicollinearity)是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确。
一般来说,由于经济数据的限制使得模型设计不当,导致设计矩阵中解释变量间存在普遍的相关关系。完全共线性的情况并不多见,一般出现的是在一定程度上的共线性,即近似共线性。
原因
(1)经济变量相关的共同趋势。
(2)滞后变量的引入。
(3)样本资料的限制。
影响
(1)完全共线性下参数估计量不存在。
(2)近似共线性下OLS估计量非有效。
多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。总之就是找容易记忆的方法。
(3)参数估计量经济含义不合理。
(4)变量的显著性检验失去意义,可能将重要的解释变量排除在模型之外。
(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。
需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
判断
判断方法1:特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。
判断方法2:条件索引列第3第4的值大于10,可以说明存在比较严重的共线性。
判断方法3:比例方差内存在接近1的数(0.99),可以说明存在较严重的共线性。
解决方法
(1)排除引起共线性的变量。
找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。
(2)差分法。
时间序列数据、线性模型:将原模型变换为差分模型。
(3)减小参数估计量的方差:岭回归法(Ridge Regression)。
暂无数据