人工智能时代,程式化的、重复性的、仅靠记忆与练习就可以掌握的技能将是最没有价值的技能,几乎一定可以由机器完成;
相反,那些最能体现人的综合素质的技能,例如:
人对于复杂系统的综合分析、决策能力;
由生活经验及文化熏陶产生的直觉、常识;
基于人自身的情感(爱、恨、热情、冷漠等)与他人互动的能力;
这些是人工智能时代最有价值,最值得培养的技能。
而且,这些技能中,大多数都是因人而异,需要“定制化”的教育或培养,不可能从传统的“批量”教育中获取;
举几个例子:
人类工程师只有去专注计算机、人工智能、程序设计的思想本质,学习如何创造性地设计下一代人工智能系统,或者指导人工智能系统编写最复杂、最有创造力的软件,才可以在未来成为人机协作模式的“人类代表”,多学习机器学习特别是深度学习等未来最有价值的知识;
普通翻译会被取代,但是文学作品的翻译,因为其中涉及到大量人类的情感、审美、创造力、历史文化积淀等,一定是机器翻译无法解决的一个难题;
未来的生产制造业是机器人、智能流水线的天下,人类只有学习更高层次的知识,比如系统设计和质量管控方面,才能体现人类的价值;
未来人们对文化、娱乐的追求会达到一个更高的层次,文娱产业总体规模会是今天的数十倍甚至上百倍。那么,学习文艺创作技巧,用人类独有的智慧、丰富的情感以及对艺术的创造性解读去创作娱乐内容,成为作家、音乐家、电影导演和编剧、游戏设计师等,是证明自己价值最好的方式之一;
科幻作家、雨果奖得主郝景芳说:
很显然,我们需要去重视那些重复性标准化的工作所不能覆盖的领域。
包括什么呢?包括创造性、情感交流、审美、艺术能力,还有我们的综合理解能力、我们把很多碎片连成一个故事这样的讲述能力,我们的体验。
所有这些在我们看来非常不可靠的东西,其实往往是人类只能非常独特的能力。
二、AI时代该如何学习?
学习方法也非常重要,好的学习方法会事半功倍,未来的学习方法包括:主动挑战极限
从实践中学习
关注启发式教育,培养创造力和独立解决问题的能力;
主动向机器学习;
既学习人人协作,也学习人机协作;
学习要追随兴趣;
三、AI时代的教育要关注什么?
未来我们要更关注工作的目标和意义,以及工作背后潜在的社会价值,真正投入到擅长、热爱的领域,要关注以下几个重点问题:
个性化、定制化的教育该如何设计,如何满足不同学生的需要,如何评估定制化教育的效果?
可能需要人工智能技术的帮助,在教学数据被实时采集后,AI技术可以在这个大数据的基础上进行智能分析,帮助人类教育设计者总结得失,监控教学质量,调整课程设计,甚至与人类协作,共同设计新的教学体系
教育如何做到可持续化?最有效的再培训和再教育体系是什么?
未来人们需要大量转换工作,我们的教育体系能否顺利接纳这些人,并帮助他完成再培训?需要社会各层面的积极参与,尤其是社会福利层面的保障
教育体系的设计必须更早、更充分地烤炉全社会的公平性。
在线教育、虚拟现实技术、人工智能技术的组合,也许就是解决教育公平的最佳技术方案
在一个完全定制化的教育体系中,世界上任何一个角落的任何一个学生,都可以根据他的兴趣连接到最适合的老师,享受完全为自己量身定制的课程,得到世界一流的教育。
四、有了AI,人生还有意义吗?
AI时代,机器代劳了一切,我们如何过完一生才最有价值?
会像《机器人总动员》里的人类后代一样懈怠、肥胖吗?
开复老师认为,AI对于人生意义的挑战主要源于人类自身的心理感受。
人之所以为人,正是因为我们有感情、会思考、懂生死。而“感情”“思考”“自我意识”“生死意识”等人类特质,正是需要我们全力培养、发展与珍惜的东西。
不断提高自己,善于利用人类的特长,善于借助机器的能力,这是未来社会里各领域人才的必备特质。
如果不想成为“无用”的人,唯有从现在开始,找到自己的独特之处,拥抱人类的独特价值,成为在情感、性格、素养上都更加全面的人。
AI来了,有思想的人生并不会因此而黯然失色,因为我们全部的尊严就在于思想。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13