微访谈 ▏CDA考试是我真正进入数据分析领域的敲门砖
考试状元榜眼以及探花等优等生从小到大从来都是备受推崇的一群人,他们的笔记和经验在很多人眼中更是很多人可遇而不可求的。而他们的很多方法往往是下届学子们复习的方法,今天C君特意拜访了第六届CDA认证考试各位优秀学员的考试经验,并整理后分享给大家,以供学弟学妹们参考并能取得更好的学习经验。
李*灿
LEVEL 1 业务数据分析师状元
本科就读于安徽财经大学统数学院信息与计算科学方向;硕士就读于合肥工业大学经济学院统计学,目前为在读研究生。
如何更高效的复习CDA考试?
报考CDA的原因是想要系统地学习数据分析的基础知识(本身统计学,但觉得学的不够扎实),更重要的原因是想未来可以进一步的发展,学习更多的数据分析方面的东西,我觉得经管之家(原人大经济论坛)是一个非常值得信任的平台,事实上,我在这里真的学到了很多知识,这种体系也越来越清晰。
给学弟学妹们的建议是,在学习的过程中及时去整理思路,反复在脑子里构建一个框架,对于知识点的把握非常有益。然后就是书还是要多看几遍的,每一遍都有不一样的收获!
汪*静
LEVEL 1 业务数据分析师状元
毕业于南京一所财经类学校,专业是金融学。至今毕业已有4个年头了,从事的一直是数据分析工作。刚毕业时进入一家金融数据分析公司,入门数据分析。
工作两年后,进入房地产事业单位,做的是后台各系统房地产数据的整合和分析。现在就职于省住建厅,做省级房地产市场数据的分析工作。
如何更高效的复习CDA考试?
我想把数据分析往更深入方向学习,可能我很难成为大数据分析师,使用hadoop这些,但是从统计学到机器语言却是我可以掌握的。人的想法可能随时在变,具体发展规划得一步一步实践出来,但我很肯定我希望能在这个领域中有所学有所专。
给学弟学妹的建议是:CDA一级考试不难,只要掌握考纲和书本内容基本都不会有大问题。事实上我没有把CDA考试作为单纯一门考试,而是我真正进入数据分析领域的一个敲门砖,它是帮助我建立数据分析架构的。在准备考试之前我看过很多数据分析案例和分析框架的书,这也让我准备考试过程很轻松。很感谢这门考试,可能很多人看来一级基本都是选择判断题型,没有大挑战可言。但其实它的考试内容设置很棒,是能够帮助搭建数据分析框架的。
张*坤
LEVEL 1 业务数据分析师榜眼
2013年毕业于大连某高校,毕业后就职于政府机关,工作内容类似于人事管理,职位为助理。2016年考研,今年9月份开始读研。
如何更高效的复习CDA考试?
我的工作和数据分析并无关联,学习数据分析是兴趣使然。几年之前我想到一个问题,就是如果把一篇英文文章中的标点去掉,统一大小写,能不能发明一个算法,通过学习其他文章的语法规则,把纯由字母串组成的数据还原成文章?至少可以预测当前位置下一位的字母是什么?我自己尝试了很多算法,清楚的记得,一开始随机预测准确度是0.23,后来通过利用字母的分布,字母的前后关系等信息,使预测准确度提高到0.35,虽然进步不大,但是让我感到了数据分析的威力。在那之后很长时间都对机器学习、人工智能等学科比较感兴趣,并且自学了相关的课程。
给学弟学妹的建议:其实我也挺懒,但是一想到1000元钱的报名费,我就来了劲头(手动滑稽)。
1、正经的说,首先肯定是把书从头到尾看两遍,并且把spss、sas、数据资料准备好,按照书中说的操作一遍,这样印象深刻。
2、然后是看考试大纲,有些知识点分值高就重点看,比如主成分分析,对应分析等,书上看不懂就网上查资料,理论大致了解就行,重点是应用,学有余力理论也要搞清楚。其实我觉得书的作用就是大纲,能把学习框架画出来,这是CDA最大的作用,由于数据分析是交叉学科,内容比较繁杂,深入学习还得靠自己查资料。
3、最后就是做题了,书后的练习题都要搞明白,官网上的模拟题也要做,然后根据模拟题在百度上搜类似的题。另外希望书后的题能有一个简单的解释,像我这种自学的真是没有地方问老师。
杨*琴
LEVEL 2 业务数据分析师榜眼
2010-2015年在法国读本科和硕士,专业是计量经济与统计
2015-2016年在一家法国咨询公司工作,担任Data mining和BI工程师2016至今在德勤风险咨询担任分析师
如何更高效的复习CDA考试?
在数据分析这个领域,首先是不断提升知识技能和方法,通过工作实践,了解不同行业需求,同时结合自己掌握的知识和经验,用数据分析帮助企业解决问题。逐步培养自己成为一名真正的数据科学家。
给学弟学妹的建议:
1、合理系统安排复习时间,尽量保证每天都要看书;
2、着重理解和运用每个知识点,使所学内容融会贯通,使知识系统化,对问题的理解更深刻。
如何报考CDA认证考试?
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20