如何巧妙地用python处理数据整理中分类汇总问题
数据分析职场新人,精通一门语言至关重要。写个web服务,可以用python、 写个服务器脚本,可以用python、 数据清洗和网络爬虫,可以用python、 做机器学习数据挖掘,可以用python等等,所以说人生苦短,我用Python。
下面的问题是数据整理中经典的分类汇总问题,各个软件,SAS、R语言甚至Excel都可以比较好地解决此问题,但Python解决此问题时,也可以做到“一剑封喉”,并体现出其独特的优势,我们先看问题:
题目:下列数据来自某市房地产公司的资料,试按房屋类型和每一房屋类型下卧室个数的多少计算其平均售价?
问题比较清楚,这是一个按照“房屋类型”和“卧室个数的多少”的双条件汇总问题,即考虑在A和B两个条件下的数据分类汇总问题。该问题在工作中是常见的问题,如果在Excel完成,要依靠数据的预处理和较为复杂的函数来进行。
我们先来试算一下,比如,先看第5行,在“RANCH”这个房屋类型下,“BEDROOMS”个数为3的数据记录总共有2条,即第“5”条和第“11”条,其房价分别是“$86,650”和“$89,100”,不难算出其平均价格为“$87,875”。
用Python的Pandas(专门进行数据处理的模块)计算,首先面临的问题是如何导入数据,并且把房屋价格里面的“$”和“,”去掉,这样才能进行计算。于是一个双条件分类汇总的问题变成了字符处理的问题。
当然不可能手动去读入数据,最简洁的方式是将数据选择鼠标右键复制下来,然后这样导入:
导入让把所有的数据赋给“a”,“a”的数据结构看一下是:
告诉我们是“字符串”。面对字符串,进一步显示“a”,发现其被“n”分割:
于是想办法去掉“n”。去掉“n”不是很难,一句“a.split("n")”就可以去掉。但是进一步我们发现,各个变量是以空格“ ”相连的,所以还要去掉这个空格以便进一步计算。这里利用Python常用的“逐行扫描”技巧来完成。通常前面要先定义一个空的list,比如b:
这一步完成之后,一定要看一下b的结果,如下图所示:
下一步就是要去掉价格price里面的“$”和“,”了,这一步完成的方法比较多,最朴素的想法是用什么都没有的“”去置换这2个元素:
这里又用到Python的“for”循环的“逐行扫描”的技巧。这一步将“b”变成:
到了这一步,离结果只有“一步之遥”了。为了保险起见,我们把所有的变量都“数值化”,使用下面的语句去遍历:
得到如下的结果:
仔细比较一下前图,发现字符串都变成了数字。
到了这时候,就是“临门一脚”了,我们把数据整理成为我们熟悉的“数据框”的形式,这一步让Pandas来上场,经过整理之后,数据变得“赏心悦目”:
请注意,这条语句中,指明第一行是变量名。
通常,面临这样的数据,要进行各种计算是非常方便的。比如,要完成一开始题目提出的问题,只需一句话即得结果:
这句“画龙点睛”之笔是用groupby这个函数把数据按照2个条件分组,然后计算其均值。“.”加函数的方式是Python里面常用的形式。
我们看一下Python计算结果里面的“RANCH”和“3”,是“87875”,与我们之前计算的完全吻合。这样我们就按要求用Python完成了该数据的整理汇总。
数据的整理汇总是进行数据分析和数据挖掘工作的前期准备,比较重要,往往占用很大一部分时间。数据清洗的能力有时候直接决定数据挖掘建模预测的成败。通过该简单的小例子,向大家展示了Python中的Pandas在这方面的优势和方法。当然,Python及Pandas神通广大,远远不止做这些简单的工作,希望大家掌握这个数据分析利器,在大数据时代更好更充分的发掘数据的价值。
PS:这只是课程中的一个小案例,强化的培训,应该让你学完后很自信,学以致用,快速上手解决工作中的问题,深圳现场班&长沙远程直播班2018年1月12日开课,想学习python朋友私聊张老师。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20