如何巧妙地用python处理数据整理中分类汇总问题
数据分析职场新人,精通一门语言至关重要。写个web服务,可以用python、 写个服务器脚本,可以用python、 数据清洗和网络爬虫,可以用python、 做机器学习数据挖掘,可以用python等等,所以说人生苦短,我用Python。
下面的问题是数据整理中经典的分类汇总问题,各个软件,SAS、R语言甚至Excel都可以比较好地解决此问题,但Python解决此问题时,也可以做到“一剑封喉”,并体现出其独特的优势,我们先看问题:
题目:下列数据来自某市房地产公司的资料,试按房屋类型和每一房屋类型下卧室个数的多少计算其平均售价?
问题比较清楚,这是一个按照“房屋类型”和“卧室个数的多少”的双条件汇总问题,即考虑在A和B两个条件下的数据分类汇总问题。该问题在工作中是常见的问题,如果在Excel完成,要依靠数据的预处理和较为复杂的函数来进行。
我们先来试算一下,比如,先看第5行,在“RANCH”这个房屋类型下,“BEDROOMS”个数为3的数据记录总共有2条,即第“5”条和第“11”条,其房价分别是“$86,650”和“$89,100”,不难算出其平均价格为“$87,875”。
用Python的Pandas(专门进行数据处理的模块)计算,首先面临的问题是如何导入数据,并且把房屋价格里面的“$”和“,”去掉,这样才能进行计算。于是一个双条件分类汇总的问题变成了字符处理的问题。
当然不可能手动去读入数据,最简洁的方式是将数据选择鼠标右键复制下来,然后这样导入:
导入让把所有的数据赋给“a”,“a”的数据结构看一下是:
告诉我们是“字符串”。面对字符串,进一步显示“a”,发现其被“n”分割:
于是想办法去掉“n”。去掉“n”不是很难,一句“a.split("n")”就可以去掉。但是进一步我们发现,各个变量是以空格“ ”相连的,所以还要去掉这个空格以便进一步计算。这里利用Python常用的“逐行扫描”技巧来完成。通常前面要先定义一个空的list,比如b:
这一步完成之后,一定要看一下b的结果,如下图所示:
下一步就是要去掉价格price里面的“$”和“,”了,这一步完成的方法比较多,最朴素的想法是用什么都没有的“”去置换这2个元素:
这里又用到Python的“for”循环的“逐行扫描”的技巧。这一步将“b”变成:
到了这一步,离结果只有“一步之遥”了。为了保险起见,我们把所有的变量都“数值化”,使用下面的语句去遍历:
得到如下的结果:
仔细比较一下前图,发现字符串都变成了数字。
到了这时候,就是“临门一脚”了,我们把数据整理成为我们熟悉的“数据框”的形式,这一步让Pandas来上场,经过整理之后,数据变得“赏心悦目”:
请注意,这条语句中,指明第一行是变量名。
通常,面临这样的数据,要进行各种计算是非常方便的。比如,要完成一开始题目提出的问题,只需一句话即得结果:
这句“画龙点睛”之笔是用groupby这个函数把数据按照2个条件分组,然后计算其均值。“.”加函数的方式是Python里面常用的形式。
我们看一下Python计算结果里面的“RANCH”和“3”,是“87875”,与我们之前计算的完全吻合。这样我们就按要求用Python完成了该数据的整理汇总。
数据的整理汇总是进行数据分析和数据挖掘工作的前期准备,比较重要,往往占用很大一部分时间。数据清洗的能力有时候直接决定数据挖掘建模预测的成败。通过该简单的小例子,向大家展示了Python中的Pandas在这方面的优势和方法。当然,Python及Pandas神通广大,远远不止做这些简单的工作,希望大家掌握这个数据分析利器,在大数据时代更好更充分的发掘数据的价值。
PS:这只是课程中的一个小案例,强化的培训,应该让你学完后很自信,学以致用,快速上手解决工作中的问题,深圳现场班&长沙远程直播班2018年1月12日开课,想学习python朋友私聊张老师。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10