一、SPSS数据分析的流程
二、SPSS特性
易用性强:操作界面极为友好,操作简单
良好的帮助系统和自学系统
为高级用户提高编程能力
功能强大:成熟的统计过程
完美的图形处理功能
提供多种数据准备技术
兼容性好:数据输入:Excel、lotus、Oracle、SQLserver、access、 dBASE、文本
数据输出:Word、HTML、XML、Excel、PowerPoint、PDF
三、数据的编辑
(一)常量
1、数值型常量:除了普通写法外还可以用科学计数法,如:1.3E18;
2、字符型常量:用单引号或双引号括起来如果字符中包含单引号,则必须使用双引号;
3、日期常量:日期个数的数据,一般需要使用日期函数进行转换;
(二)变量
1、变量名长度不能超过8;
2、三种基本的类型:数值、字符和日期;
3、可以在variableview界面设定变量的长度及小数位、变量的描述、变量值的描述、missing值、显示宽度、对齐方式和变量的测度方式;
(三)变量的测试方式
1、Scale:定距变量,如:身高、体重等;
2、Ordinal:定序变量,如:教育程度、级别等;
3、Nominal:定类变量,如:性别、民族等;
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
相关性分析背后的统计学原理很有趣吧?想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
(四)操作符与表达式
1、三种基本的运算:数学、关系和逻辑
2、数学运算符:+– * / ** ()
3、关系运算符:>>= < <= = ~=
4、逻辑运算符:&(AND)|(OR) ~(NOT)
5、三种运算对应三种表达式
(五)常用的数据操作命令
1、Data->SortCases
2、Transform->RankCases
3、Transform->Count
4、Transform->Recode
5、Transform->Automatic Recode
6、Transform->Compute
7、Data->Transpose
8、Data->Split Files
9、Data->Merge Files
(六)Compute
1、数值型:computenum1=value.
2、字符型:StringA(a11).compute a=’hello world’.
3、日期型:computedata1=date.mdy(month,day, year).
(七)Recode
1、recodevariable name(old value=new value).
2、recodevariable name(old value=new value) into new variable name.
3、字符型变量使用auto recode
(八)Splitfile
1、有的时候需要对变量做些分组的分析,但一些分析方法并不提供分组变量的设置选项这就需要用到Split file命令;
例如使用 Descriptives 做描述性分析,如果想分年龄做分析,这样就可以用年龄变量做为分组变量;
2、可以看到这里的Split其实是分组,而不是拆分文件;
3、analyzeall case分析所有的样本,不产生分组;
4、comparegroups产生对比分析组;
5、output by groups分组输入分析结果;
(九)MergeFile
1、add cases合并变量相同,但是case不同的文件;
2、addvariables合并变量不同,case相同的文件这里的变量不同可以是部分的变量不同,case相同也可以是一个文件的case是另外一个文件的子集;
(十)数据的分类汇总
1、使用Aggregate命令
2、指定分类变量对观测量进行分组,对每组观测量的各变量求描述统计量;
3、检查重复的数据
4、使用identifyduplicate cases
5、数据的加权
6、使用weightcase
7、选取一定的case进行分析
8、使用selectcases:在对数据的子集进行分析的时候需要用到这个命令;
(十一)常用的数学函
1、取绝对值:abs(数字型表达式)
2、求余数函数:mod(数字型表达式,模数),模数不能为0该函数在需要对某一变量求模数的余数时使用,如果对一个顺序编号或自然数序列求模数的余数,可将该序列按模数等距分类,从而实行等距抽样;
3、四舍五入函数:rnd(数字型表达式)
4、开方函数:sqrt(数字型表达式)
用SPSS做数据分析,快速入门数据分析师行业,就在经管之家SPSS数据分析师认证培训:
培训时间:北京:2018年1月6-7日,13-14日【四天周末班】;11-14日(四天连续班)
培训地点:北京市海淀区厂洼街3号丹龙大厦B座3018
授课安排:上午9:00至12:00; 下午1:30至4:30; 答疑4:30至5:00
培训费用:现场:3600元/人;全日制学生2800元/人(差旅及住宿费用自理);
在线直播:1900元/人
证书费用:400元,可以自愿申请工信部数据分析师证书
培训优惠(后三项优惠不叠加)
1、赠送SPSS数据统计分析师视频课程。
2、现场班老学员可以享受9折优惠。
3、同一机构3人以上报名,9折优惠。
4、同一机构6人以上报名,8折优惠。
讲师介绍
丁亚军、 数据分析总监,任职于南京上度市场咨询有限公司,SAS、SPSS统计学讲师,中国学习路径图国际中心技术顾问。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验
课程大纲
1.SPSS的介绍
1.1 实例演示。
1.2 spss的特点。
1.3 spss界面介绍(综合设置、help帮助介绍)。
1.4 spss数据变量详解:变量类型、缺失值、变量测量等。
2.数据的输入与保存
2.1 数据获取:
2.1.1 单选题、多选题与开放题的数据的录入。
2.1.2 spss不同文件格式及外部数据(非spss数据格式)的导入。
2.2 个体水平数据集(宽型数据)与测量水平(长型数据)数据集的异同。
3. 数据预分析
3.1 数据清理
3.1.1 数据的选择
3.1.2 数据的合并
3.1.3 数据的拆分
3.1.4 检查异常值
3.1.5 个案的加权
3.1.6 缺失值
3.2 新变量生成,SPSS函数
3.3 使用SPSS变换数据结构——转置和重组
3.4 常用的描述性统计分析功能
3.4.1 频率过程
3.4.2 描述过程
3.4.3 探索过程
3.5 使用SPSS绘制常用统计图形
3.5.1散点图
3.5.2条图
3.5.3控制图
3.5.4 ROC曲线
4. 数据分析
4.1 假设检验
4.1.1 假设检验的原理
4.1.2 了解均值的显著性检验
4.2 差异分析及相关分析过程
4.2.1 均值过程、T检验与方差分析
4.2.2 案例分析1:产品质量差异分析
4.2.2 卡方分析
4.2.2.1 卡方分析原理
4.2.2.2 案例分析2:企业选址的区位分析
4.2.3 相关分析
4.2.4 偏相关分析
4.2.5 距离分析
4.3 回归分析基础
4.3.1 简单回归分析
4.3.2 多元回归分析
4.3.2.1 逐步回归
4.3.2.2回归预测与残差分析
4.3.2.3方差不齐与强影响点的处理—加权最小二乘法与最小一乘法
4.3.2.4共线性的处理—岭回归(ridge regression)
4.3.2.5注意问题
4.3.2.6案例分析3:产品合格率的影响因素及其预测分析
4.3.3 logistic回归分析
案例分析4:客户违约信息研究
4.3.4 曲线估计
4.4 因子分析与聚类分析
4.4.1 主成分分析与因子分析
4.4.2 快速聚类法与聚类法
4.4.3 判别分析
4.4.4案例分析5:客户购买力信息研究
4.5 对应分析
4.5.1对应分析原理
4.5.2简单对应分析
4.5.3多元对应分析(最优尺度分析)
4.5.4案例分析6:企业选址的区位分析(案例2)
4.6 bootstrap技术
4.6.1 bootstrap原理
4.6.2 bootstrap应用
4.6.3 bootstrap功能在SPSS中的实现
5. 使用SPSS制作数据分析的统计报表
5.1 制作报表前对变量的检查
5.2 制作报表的中对不同类型的数据处理
5.3 报表生成功能与其他选项的区别
5.4 注意事项
6. SPSS编程操作
6.1 程序编辑窗口操作入门
6.2 基本语句
6.3 结构化语句
6.4 实例讲解spss编程
课程特色
1、结构有层次、内容全面、通俗易懂,通过SPSS工具一步步带您走进数据分析的世界,探索数据分析的价值,让数据分析变得既简单又有趣。
2、从工作实际问题出发,总结并提炼工作中SPSS经常用到并且非常实用的数据处理、数据分析实战方法和技巧。
3、力求通俗易懂的介绍数据分析方法与技巧,在不影响学习理解的前提下,尽可能避免使用晦涩难懂的统计术语或模型公式
培训对象
1、从事企业数据分析、数据挖掘及相关工作的决策分析、工程技术人员;
2、需要进行大数据统计分析的高校、科研院所的科技工作者;
3、打算从事数据统计分析的在校生、在职人员。
报名流程及咨询
1. 点击“立即报名”提交报名信息;
2. 给予反馈,确认报名信息;
3. 网上交费
4. 开课前一周发送培训教室路线图,培训现场领取发票
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06