cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4
LSTM与seq2seq有什么区别吗?
2023-04-12
LSTM和Seq2Seq是两种常见的深度学习架构,用于自然语言处理领域的序列任务。虽然这两种架构都可以被用来解决类似机器翻译或文本摘要之类的问题,但它们各自具有不同的优缺点和应用场景。 LSTM LSTM(长短期记忆网络 ...
LSTM的一个batch到底是怎么进入神经网络的?
2023-04-12
LSTM(长短期记忆)是一种常用的循环神经网络模型,广泛应用于自然语言处理、语音识别、时间序列预测等领域。在使用LSTM模型时,输入数据通常按照batch方式加载到模型中进行训练。下面将详细介绍一个batch如何进入LS ...
为什么用Keras搭建的LSTM训练的准确率和验证的准确率都极低?
2023-04-11
Keras是一个高级神经网络API,它简化了深度学习模型的构建和训练过程。其中,LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN),适用于时序数据处理。然而,在使用Keras搭建LSTM模型进行训练时,有时会遇 ...
GRU和LSTM在各种使用场景应该如何选择?
2023-04-10
在自然语言处理领域中,循环神经网络(RNN)是一种被广泛使用的模型。其中,长短期记忆网络(LSTM)和门控循环单元(GRU)是两种流行的变体。这两种模型在各种应用场景中都有所表现,但它们的优点和缺点也不尽相同。 ...
LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?
2023-04-07
LSTM是一种常用的循环神经网络架构,它可以有效地解决传统RNN中长序列训练过程中产生的梯度消失和梯度爆炸问题。LSTM通过使用门控机制来控制信息的流动,其中tanh激活函数扮演了重要角色。 tanh激活函数是一种非线性 ...
如何进行多变量LSTM时间序列预测未来一周的数据?
2023-04-07
随着时间序列分析的普及,LSTM 成为了深度学习中最常用的工具之一。它以其优异的性能和对数据的自适应特征提取而闻名。然而,在实际应用中,我们通常需要通过多变量来预测未来时间序列数据。本文将介绍如何使用多变 ...
LSTM的cell个数是如何设置?
2023-04-04
LSTM(长短时记忆网络)是一种常用的循环神经网络(RNN)结构,具有较强的序列建模能力。在使用LSTM进行训练时,其中一个重要的超参数是LSTM中cell(记忆单元)的个数,也称为隐藏节点数。在本文中,我们将探讨如何 ...
CRF和LSTM 模型在序列标注上的优劣?
2023-03-31
序列标注是一种重要的自然语言处理任务,通常用于实体识别、命名实体识别、分词、词性标注等。在序列标注中,CRF和LSTM是两种常用的模型,本文将比较它们在序列标注上的优劣。 一、CRF 条件随机场(CRF)是一种无向 ...
LSTM模型后增加Dense(全连接)层的目的是什么?
2023-03-28
LSTM模型是一种用于处理时序数据的深度学习模型,它能够有效地捕捉时间上的依赖关系。然而,在一些应用场景中,单纯使用LSTM模型可能无法达到预期的效果,这时候可以考虑在LSTM模型后增加Dense(全连接)层来进一步 ...
LSTM里Embedding Layer的作用是什么?
2023-03-22
LSTM是一种经典的循环神经网络,已经广泛应用于自然语言处理、语音识别、图像生成等领域。在LSTM中,Embedding Layer(嵌入层)是非常重要的一部分,它可以将输入序列中的每个离散变量映射成一个连续向量,从而便于 ...
时间序列预测很火的一维CNN LSTM结构,CNN和LSTM之间该如何连接?
2023-03-22
时间序列预测是一项重要的任务,许多研究人员和数据科学家都致力于提高其准确性。近年来,一维CNN-LSTM结构已成为时间序列预测中最受欢迎的模型之一,因为它可以同时利用CNN和LSTM的优点。在本文中,我们将探讨如何 ...
LSTM如何来避免梯度弥散和梯度爆炸?
2023-03-22
LSTM(Long Short-Term Memory)是一种常用的循环神经网络架构,主要应用于序列数据的处理。在训练LSTM模型时,由于网络层数和时间步长的增加,会出现梯度弥散和梯度爆炸的问题。本文将介绍LSTM是如何通过一系列的改 ...
LSTM神经网络输入输出究竟是怎样的?
2023-03-15
LSTM神经网络是一种常用于序列数据建模的深度学习模型,其全称为长短期记忆网络(Long Short-Term Memory Network)。与传统的循环神经网络相比,LSTM网络具有更好的长期依赖性和记忆能力,因此能够有效地处理时间序 ...

深度学习中 LSTM 的核心思想是什么?

深度学习中LSTM的核心思想是什么?
2020-07-13
LSTM全称为:long short term memory,也叫作长短期记忆人工神经网络,本质上是一种时间循环神经网络。LSTM是为了解决一般的RNN长期依赖问题而被专门设计出来的。所有的RNN都具有一种重复神经网络模块的链式形式。 ...

深度学习算法:CNN、RNN、 LSTM 、TensorFlow等之间的关系!

深度学习算法:CNN、RNN、LSTM、TensorFlow等之间的关系!
2020-05-27
用于实际问题的深度神经网络可能具有10层以上的隐藏层。它的拓扑可能很简单,也可能很复杂。网络中的层越多,它可以识别的特征就越多。不幸的是,网络中的层越多,计算所需的时间就越长,并且训练起来就越困难。 ...

 LSTM 与RNN之间存在什么关系?

LSTM与RNN之间存在什么关系?
2020-05-21
百度有云,LSTM,Long Short-Term Memory,长短期记忆网络属于时间循环神经网络。 RNN的一个核心思想是将以前的信息连接到当前的任务中来,例如,通过前面的视频帧来帮助理解当前帧。如果RNN真的能够这样做的话,那 ...
CDA数据分析标准课程更新
2024-11-30
2024年12月 CDA 标准课程更新 (v8.0) 脱产班: 新增企业需要的数据能力、数据分析思维、指标体系管理内容 新增标签体系与用户画像内容,及其相应案例 新增归因分析内容 新增进阶数据分析思维、量化策略分析框架 ...
入行数据分析必学的5大领域和3个实战项目
2024-09-02
随着数据驱动决策在各行业中的广泛应用,数据分析已成为现代企业中不可或缺的一部分。对于初学者来说,掌握一些关键领域的知识和技能,不仅能帮助你快速入门,还能为你在数据分析领域打下坚实的基础。在这篇文章中, ...
卷积神经网络与循环神经网络:深度学习的双剑合璧
2024-08-09
在当今的数据挖掘领域,深度学习技术已经成为了推动科技进步的关键力量。其中,卷积神经网络(CNN)和循环神经网络(RNN)作为两种核心的深度学习模型,在图像识别、自然语言处理等多个领域发挥了重要作用。尽管这 ...
如何在深度学习中处理图像和文本数据?
2024-04-15
在深度学习中,处理图像和文本数据是非常重要的任务。随着计算机视觉和自然语言处理领域的快速发展,图像和文本数据已经成为广泛应用于各种领域的主要数据类型。本文将介绍如何使用深度学习方法有效地处理图像和文本 ...
1234 1/4

OK