cda

数字化人才认证

首页 > 行业图谱 >

LSTM与seq2seq有什么区别吗?
2023-04-12
LSTM和Seq2Seq是两种常见的深度学习架构,用于自然语言处理领域的序列任务。虽然这两种架构都可以被用来解决类似机器翻译或文本摘要之类的问题,但它们各自具有不同的优缺点和应用场景。 LSTM LSTM(长短期记忆网络 ...
pytorch如何加载不同尺寸的数据集?
2023-04-12
PyTorch是一个非常流行的深度学习框架,它提供了很多有用的工具和函数来帮助我们有效地构建和训练神经网络。在实际的应用中,我们通常需要处理不同尺寸的数据集,例如图像数据集。本文将介绍如何使用PyTorch加载不同 ...

pytorch中多分类的focal loss应该怎么写?

pytorch中多分类的focal loss应该怎么写?
2023-04-12
PyTorch是一种广泛使用的深度学习框架,它提供了丰富的工具和函数来帮助我们构建和训练深度学习模型。在PyTorch中,多分类问题是一个常见的应用场景。为了优化多分类任务,我们需要选择合适的损失函数。在本篇文章中 ...
如何绘制caffe训练过程中的loss和accurary的曲线??
2023-04-11
Caffe是一种流行的深度学习框架,可用于训练各种神经网络。在Caffe训练过程中,我们通常会关注损失函数和准确率(accuracy)等指标,并希望将其可视化为曲线以便更好地了解模型的性能变化。本文将介绍如何使用Python ...
为什么用Keras搭建的LSTM训练的准确率和验证的准确率都极低?
2023-04-11
Keras是一个高级神经网络API,它简化了深度学习模型的构建和训练过程。其中,LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN),适用于时序数据处理。然而,在使用Keras搭建LSTM模型进行训练时,有时会遇 ...
pytorch 如何实现梯度累积?
2023-04-11
PyTorch是一个非常流行的深度学习框架,它提供了一种直观且易于使用的方法来构建、训练和部署神经网络模型。在深度学习中,梯度下降法是最基本的优化算法之一,而梯度累积则是一种可以提高梯度下降的效果的技术。在 ...
GRU和LSTM在各种使用场景应该如何选择?
2023-04-10
在自然语言处理领域中,循环神经网络(RNN)是一种被广泛使用的模型。其中,长短期记忆网络(LSTM)和门控循环单元(GRU)是两种流行的变体。这两种模型在各种应用场景中都有所表现,但它们的优点和缺点也不尽相同。 ...
请问pycharm运行程序出现Using tensorflow backend是怎么回事?
2023-04-10
当你在PyCharm中运行一个使用TensorFlow的Python程序时,有时会看到一条消息"Using TensorFlow backend"。这是因为在程序中使用了Keras库,而Keras默认使用TensorFlow作为后端引擎。这条消息实际上只是告诉你当前的 ...
在 Pandas DataFrame 中如何归一化某列?
2023-04-10
Pandas是一种用于数据分析和处理的常用Python库。在Pandas DataFrame中,归一化某列可以将该列的值从原始比例缩放到0到1之间的标准比例,使其更容易与其他列进行比较和分析。本文将介绍如何对Pandas DataFrame中的某 ...
LSTM 中为什么要用 tanh 激活函数?tanh 激活函数的作用及优势在哪里?
2023-04-07
LSTM是一种常用的循环神经网络架构,它可以有效地解决传统RNN中长序列训练过程中产生的梯度消失和梯度爆炸问题。LSTM通过使用门控机制来控制信息的流动,其中tanh激活函数扮演了重要角色。 tanh激活函数是一种非线性 ...
相比Tensorflow2和PyTorch,TensorFlow1.x版本有什么弊端?
2023-04-07
TensorFlow 1.x版本是Google发布的第一个深度学习框架,它在2015年推出后,迅速成为了业界最受欢迎的深度学习框架之一。然而,TensorFlow 1.x版本也存在一些弊端,这些弊端在TensorFlow 2.0和PyTorch等新一代深度学 ...
深度学习网络框架里,神经元数量怎么确定?
2023-04-07
在深度学习网络框架中,确定神经元数量是一个重要的设计决策。神经元数量越多,模型的能力和复杂度就越高,但同时也会增加计算和存储资源的需求,可能导致过拟合等问题。因此,正确地确定神经元数量对于设计高效和准 ...
为什么 A40 GPU Pytorch 无法并行训练?
2023-04-07
在过去的几年中,深度学习领域取得了显著的发展。为了更好地利用硬件资源来训练复杂的深度神经网络,大量的工作已经被投入到并行化训练算法和框架的研究中。然而,一些GPU在使用PyTorch等库时可能会遇到无法有效并行 ...
TensorFlow和spark的ml以及python的scikit-learn 三者的区别是什么?
2023-04-07
TensorFlow, Spark的ML和Python的Scikit-learn是三种不同的机器学习工具,它们各自有其独特的特点和优势。以下是它们之间的主要区别。 TensorFlow TensorFlow是由Google开发的一个基于图形计算的深度学习框架。它 ...
pytorch中model.eval()会对哪些函数有影响?
2023-04-07
PyTorch是一个广泛使用的深度学习框架,提供了丰富的工具和函数来构建和训练神经网络模型。其中,model.eval()是一个重要的函数,用于将模型转换为评估模式。该函数会影响到模型中的一些关键函数,如前向传 ...
Pytorch的nn.CrossEntropyLoss()的weight怎么使用?
2023-04-07
Pytorch是深度学习领域中广泛使用的一个深度学习框架,它提供了丰富的损失函数用于模型训练。其中,nn.CrossEntropyLoss()是用于多分类问题的常用损失函数之一。它可以结合权重参数对样本进行加权处理,以应对数据集 ...
pytorch 中pkl和pth的区别?
2023-04-07
PyTorch是一个流行的深度学习框架,它提供了许多工具来帮助研究人员和开发人员构建和训练神经网络。在PyTorch中,我们可以使用两种不同的文件扩展名将模型保存到磁盘上:.pkl和.pth。这两个扩展名都用于保存PyTorch ...
python训练的pytorch模型,如何使用c 调用并使用TensorRT加速?
2023-04-07
PyTorch 是一种非常流行的深度学习框架,但是它不太适合在嵌入式系统和实时部署上使用,因为它在计算上的速度相对较慢。为了加速 PyTorch 模型的推理,可以使用 NVIDIA 的 TensorRT 库。TensorRT 旨在优化深度学习模 ...
数据分析师文科生如何?
2023-04-07
数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工作,数据分析师需要掌握以下几个方面的技能: ...
文科生如何做数据分析师?
2023-04-07
文科生如何做数据分析师?这是一个很好的问题,因为数据分析师是一个非常有前途的职业,需要具备多方面的能力和知识。数据分析师的主要工作是利用数据来发现问题、提供洞察、支持决策、优化流程等。为了做好这些工 ...

OK