cda

数字化人才认证

首页 > 行业图谱 >

12 2/2
神经网络中难样本和噪音样本有什么区别?
2023-04-07
在神经网络中,难样本和噪音样本是两个重要的概念,它们在模型训练和预测过程中起着不同的作用。 首先,噪音样本是指在数据集中存在的不符合真实分布的异常、异常值或错误标注的数据样本。这些样本可能会对模型的性 ...
如果有无限数量的数据训练神经网络,结果会如何?
2023-04-07
如果给神经网络提供无限数量的数据进行训练,那么神经网络将能够更好地理解真实世界的复杂性。这样的训练可以帮助神经网络克服过拟合和欠拟合等常见问题,同时也可以提高模型的准确性和鲁棒性。 然而,实际上不存在 ...
nlp序列标注任务如何处理类别极度不平衡问题?
2023-04-07
自然语言处理(NLP)中的序列标注任务涉及将一系列文本标记为特定类别。 在这种情况下,如果数据集中存在类别不平衡,则可能会影响模型的性能。 对于一个极度不平衡的数据集,即使使用优秀的机器学习算法,也可能会 ...
训练神经网络模型时对图片的预处理是否必要?
2023-04-03
在训练神经网络模型时,对输入数据进行预处理是一个非常重要的步骤。特别是当我们处理图片数据时,预处理操作可以帮助我们提高模型的性能和效率。 为什么需要预处理? 首先,让我们考虑一下图片在计算机中是如何表示 ...
神经网络loss值很小,但实际预测结果差很大,有什么原因?
2023-04-03
神经网络是一种模拟人类神经系统运作的计算模型,可以完成很多复杂的任务,如图像识别、语音识别和自然语言处理等。在训练神经网络时,最重要的指标是损失函数(loss function),用于衡量模型预测结果与真实值之间 ...
神经网络训练结果不稳定可能是什么原因?有什么解决办法?
2023-04-03
神经网络是一种强大的机器学习模型,可用于各种任务。然而,在训练神经网络时,我们可能会遇到结果不稳定的情况,这意味着在同样的数据集和超参数下,神经网络的性能可能会有很大的差异。本文将探讨神经网络训练结果 ...
卷积神经网络可以用于小目标检测吗?
2023-03-31
卷积神经网络(Convolutional Neural Networks,CNN)是一种广泛应用于计算机视觉领域的深度学习模型。CNN通过不断堆叠卷积层、池化层和全连接层等组件,可以自动从原始图像中提取出有意义的特征,从而实现诸如图像 ...
为什么神经网络具有泛化能力?
2023-03-30
神经网络是一种计算模型,它通过学习输入数据的特征,自动提取和表达数据中的规律,并能够推广到未见过的数据中。这种能力被称为泛化能力。 神经网络的泛化能力可以归结为以下几个原因: 模型参数的优化 神经网络 ...
训练神经网络时,训练集loss下降,但是验证集loss一直不下降,这怎么解决呢?
2023-03-30
在机器学习中,训练神经网络是一个非常重要的任务。通常,我们会将数据集分成训练集和验证集,用于训练和测试我们的模型。在训练神经网络时,我们希望看到训练集的损失值(loss)不断下降,这表明随着时间的推移,模 ...
图神经网络如何在自然语言处理中应用?
2023-03-29
图神经网络是一种新兴的深度学习模型,其可以有效地捕捉非线性关系和复杂数据结构。近年来,图神经网络在自然语言处理领域中得到了广泛应用,特别是在文本分类、命名实体识别、情感分析等任务中取得了很好的效果。 ...

Python库Numpy里ndarray.ndim 是什么意思?

Python库Numpy里ndarray.ndim 是什么意思?
2023-03-27
Numpy是Python中一个通用的数值计算库,它主要用于处理多维数组数据。在这个库里,ndarray是我们最常使用的一个类,它表示一种多维数组对象。ndarray.ndim就是描述这个多维数组对象的维度数。 通俗地说,ndarray可以 ...
卷积神经网络提取图像特征时具有旋转不变性吗?
2023-03-22
卷积神经网络(Convolutional Neural Network,CNN)是一种非常强大的图像处理和分类工具。在许多实际应用中,我们需要对图像进行旋转、缩放、平移等操作,并期望神经网络能够对这些变化保持不变性。本文将探讨卷积 ...
pytorch如何设置batch-size和num_workers,避免超显存, 并提高实验速度?
2023-03-22
PyTorch 是一个广泛使用的深度学习框架,在使用过程中,设置 Batch Size 和 Num Workers 是非常重要的。Batch Size 与 Num Workers 的设置关系到 GPU 内存的使用和训练速度。 在 PyTorch 中,通过 DataLoader 对数据 ...
阅读论文如何帮助你成为一名更有效的数据科学家
2022-03-14
作者尤金·颜,亚马逊应用科学家 “与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“ 然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位 ...

如何构建有指导的数据挖掘模型案例分享

如何构建有指导的数据挖掘模型案例分享
2018-07-11
如何构建有指导的数据挖掘模型案例分享 数据挖掘的目的,就是从数据中找到更多的优质用户。接着上篇继续探讨有指导数据挖掘方法模型。什么是有指导的数据挖掘方法模型,以及数据挖掘如何构建模型。在构建一个有 ...
大数据驱动国家治理的未来图景
2018-04-09
大数据驱动国家治理的未来图景 大数据是信息化发展的新阶段。大数据是一种创新技术、一种基础设施、一种生产要素、一种战略资源、一种科技产业,也是一种治理技术。随着互联网技术的迅猛发展,大数据已经成为了 ...

深度学习防止过拟合的方法

深度学习防止过拟合的方法
2018-02-26
深度学习防止过拟合的方法 过拟合即在训练误差很小,而泛化误差很大,因为模型可能过于的复杂,使其”记住”了训练样本,然而其泛化误差却很高,在传统的机器学习方法中有很大防止过拟合的方法,同样这些方法很多也 ...
北京迎来大数据发展机遇-实施大数据战略
2016-12-14
北京迎来大数据发展机遇-实施大数据战略 国外大数据发展情况 世界经济论坛的一份报告称,“大数据为新财富,价值堪比石油”。大数据将成为未来提高竞争力的关键要素,受到了美国为首的发达国家的重视,从发 ...
12 2/2

OK