cda

数字化人才认证

首页 > 行业图谱 >

竞赛中常见的特征工程技巧有哪些?
2023-08-15
特征工程是机器学习和数据挖掘领域中的关键步骤之一。它涉及对原始数据进行转换、选择和创建特征,以使其更适合用于机器学习算法的训练和预测。在竞赛中,精心设计的特征工程技巧可以显著提高模型的性能。以下是常见 ...
如何对数据进行特征工程
2023-06-15
特征工程是机器学习中至关重要的一步,它是将原始数据转换为机器学习算法可以使用的特征向量的过程。在本文中,我们将探讨如何对数据进行特征工程。 数据清洗 在进行特征工程之前,首先需要对原始数据进行清洗。这 ...
特征工程是什么?常用的方法有哪些?
2020-07-07
“数据决定了机器学习的上限,而算法只是尽可能逼近这个上限”,这里的数据指的就是经过特征工程得到的数据。特征工程指的是把原始数据转变为模型的训练数据的过程,它的目的就是获取更好的训练数据特征,使得机器 ...

一文带你读懂 特征工程

一文带你读懂特征工程
2020-04-20
无论它的规模和大小如何,数据已经成为现代企业、公司和组织的一流资产。任何一个智能系统都需要数据驱动,无论它多复杂。每个智能系统的核心,均有一个或多个基于某种数据学习方法的算法,例如机器学习、深 ...
还在被数据分析师面试问题难倒?这10个高频考题+答案,提前背熟!
2024-12-20
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加一些面试中的小技巧和实用建议,助你在面试中稳操胜券! 1️⃣ 数学模型掌握情况 考察 ...
数据分析入门到底难在哪?新手最常踩的3大“坑”曝光!
2024-12-19
入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践能力上出现了短板。今天就来聊聊数据分析入门的三大常见“坑”,希望帮助每一位入门的 ...
数据分析师的统计学基础知识
2024-12-15
数据分析师在当今的商业和技术环境中扮演着至关重要的角色,他们的工作对于任何数据驱动的企业来说都是不可或缺的。那么,作为一个成功的数据分析师,需要掌握哪些统计学基础知识呢? 描述性统计 首先,我们从描述性 ...
正态分布特征对数据分析的影响
2024-12-09
在数据分析领域,理解正态分布的特征对构建有效的数据分析模型至关重要。正态分布,也被称为高斯分布,是许多自然现象中常见的数据分布形式。它具有对称的钟形曲线,均值、中位数和众数相等,以及68-95-99.7规则等特 ...
优化随机森林模型的策略
2024-12-06
随机森林,作为一种强大的机器学习算法,广泛应用于数据分析和预测建模中。要充分发挥随机森林模型的潜力,我们需要深入了解如何优化其性能,以在不同场景下获得更准确和稳健的结果。优化随机森林模型涉及多个方面, ...
RNN和CNN在转移学习中的应用
2024-12-06
在现代机器学习领域,迁移学习发挥着重要作用。尤其是卷积神经网络(CNN)和循环神经网络(RNN)在图像处理、自然语言处理等任务中展现出独特优势。本文将探讨它们在迁移学习中的应用,揭示它们各自的特点以及如何利 ...
模型过拟合的优化解决方案
2024-12-06
理解模型过拟合 模型过拟合是指机器学习模型在训练数据上表现出色,但在新数据或未见过的数据上表现不佳的现象。这通常是因为模型过于复杂,捕捉到了训练数据中的噪声而非内在模式,导致泛化能力下降。 简化模型复杂 ...

欠拟合的数学原理探讨

欠拟合的数学原理探讨
2024-12-06
欠拟合是机器学习和统计建模中一个常见但棘手的问题。其核心在于模型过于简单,无法完整捕捉数据中的复杂关系,导致模型在训练数据和新数据上表现不佳。让我们深入探讨欠拟合的数学原理、特征及解决方法。 欠拟合的 ...
欠拟合与特征选择的关系
2024-12-06
在数据分析中,欠拟合和特征选择之间存在着紧密的联系。欠拟合指的是模型过于简单,无法有效捕捉数据中的复杂模式,导致在训练集和测试集上表现不佳。特征选择在解决欠拟合问题中扮演着至关重要的角色,帮助模型更好 ...
如何利用集成学习优化模型性能
2024-12-06
数据分析领域中,集成学习是一项关键技术,它通过结合多个模型的力量,提升整体预测性能和稳定性。这种方法利用多个个体学习器的智慧,以改善模型的准确度、泛化能力和鲁棒性。我们将深入探讨几种常见的集成学习方法 ...
数据分析模型的错误分析与修正
2024-12-06
数据分析模型的构建是一个错综复杂的过程,涉及数据处理、模型训练、误差分析和优化等多个关键环节。在这篇文章中,我们将深入探讨常见的问题及解决方案,以及如何通过错误分析不断完善模型。 数据问题 数据在数据分 ...
随机森林在机器学习中的应用优缺点
2024-12-06
随机森林(Random Forest)作为一种集成学习算法,在机器学习领域广受欢迎。它通过构建多个决策树,并结合它们的预测结果,旨在提高模型的准确性和鲁棒性。让我们深入探讨随机森林在机器学习中的应用优势和局限性。 ...
异常值处理的最佳实践
2024-12-06
在数据分析和预处理中,异常值处理是至关重要的一环。它旨在识别并处理那些明显偏离其他观测值的数据点,这些异常值可能是由测量误差、数据输入问题或其他非典型情况引起的。对数据准确性和模型性能都可能造成显著影 ...
欠拟合的实际案例分享
2024-12-05
欠拟合是机器学习中常见的问题,指模型无法在训练和测试数据上表现良好,往往由于模型过于简单而无法捕捉数据中的复杂关系。以下将通过实际案例分享来深入探讨欠拟合问题及其影响。 遥感数据回归树模型 研究人员进行 ...
使用SHAP值计算特征重要性的方法
2024-12-05
在解释机器学习模型预测结果时,特征重要性评估至关重要。其中,SHAP(SHapley Additive exPlanations)作为一种基于博弈论的方法,通过计算每个特征对模型输出的贡献,帮助我们深入理解模型的预测准确性以及特征之 ...
如何用机器学习提升数据分析能力
2024-12-05
在当今信息爆炸的时代,数据扮演着至关重要的角色。然而,仅拥有大量数据并不足以获得深刻的洞察力。这就引入了机器学习(ML)这一强大工具,它不仅能够加速数据分析过程,还能为我们带来更精准的预测和更深入的见解 ...

OK