cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4
交叉熵损失函数的梯度下降算法
2024-12-05
在机器学习和深度学习领域,交叉熵损失函数扮演着关键角色,特别是在分类问题中。它不仅被广泛运用于神经网络的训练过程,而且通过衡量模型预测的概率分布与实际标签分布之间的差异,指导着模型参数的优化路径。 交 ...
梯度下降法的神经网络容易收敛到局部最优,为什么应用广泛?
2023-03-22
梯度下降法是神经网络中最为常用的优化算法,它的主要思想是通过不断迭代来调整神经网络中的参数,从而使得损失函数逐渐逼近全局最小值。然而,由于神经网络中存在大量的非凸性和高维度特征,因此梯度下降法容易收 ...

基于随机 梯度下降 的矩阵分解推荐算法

基于随机梯度下降的矩阵分解推荐算法
2018-03-24
基于随机梯度下降的矩阵分解推荐算法 SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。 矩阵分解推荐的思想就是基于 ...

 梯度下降 法分析

梯度下降法分析
2017-03-15
梯度下降法分析 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \\(\\begin{aligned} ...

批量 梯度下降 与随机 梯度下降

批量梯度下降与随机梯度下降
2017-03-15
批量梯度下降与随机梯度下降 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。 ...
数据分析师必须学的数学知识
2024-12-02
作为数据分析领域的探险者,我们时常需要穿越数字的迷雾,发现隐藏在数据背后的故事。而要成为一名优秀的数据分析师,数学知识无疑是我们的利剑和护身符。让我们深入探讨,了解数据分析师必须掌握的数学基础,以助力 ...
数据科学家需要掌握哪些深度学习技能?
2024-06-04
作为数据科学家,深度学习是必不可少的技能之一。深度学习是机器学习领域的一个子领域,通过建立和训练多层神经网络来模拟人类大脑的工作原理。在数据科学的实践中,掌握深度学习技能对于处理复杂的数据和解决现实世 ...
如何使用机器学习算法进行预测和优化?
2024-03-22
机器学习是一种通过训练模型来自动从数据中学习规律和模式的方法。借助机器学习算法,我们可以对未来事件进行预测,并找到最佳解决方案以优化某些目标。这使得机器学习算法在众多领域中都发挥着重要作用,包括金融 ...
如何使用机器学习进行分类和回归预测?
2024-03-21
机器学习是一种利用统计学和计算机科学的方法,通过从数据中学习模式和关系来进行分类和回归预测的技术。在本文中,我们将介绍使用机器学习进行分类和回归预测的基本步骤和常见算法。 分类和回归是机器学习中两个最 ...
机器学习算法中常用的优化方法有哪些?
2024-02-23
在机器学习中,优化方法是为了找到参数的最佳值以使模型性能达到最优化的技术。这些方法可以帮助我们解决复杂的优化问题并提高模型的准确性和效率。下面将介绍一些常用的机器学习优化方法。 梯度下降法(Gradient ...
如何调参以优化机器学习模型的性能?
2023-12-11
调参是机器学习中优化模型性能的重要步骤。通过调整模型的超参数,我们可以寻找最佳组合来提高预测准确性和泛化能力。以下是一些优化机器学习模型性能的常用调参方法。 了解超参数:首先,要理解不同算法和模型的 ...
中级数据科学家如何提高模型精度?
2023-10-14
提高模型精度是中级数据科学家在工作中非常重要的任务之一。通过优化模型,我们可以更好地理解和预测数据,并为业务决策提供更准确的指导。下面将介绍一些方法,帮助中级数据科学家提高模型精度。 数据质量与特征 ...
有哪些机器学习算法适合分类问题?
2023-10-10
当涉及到分类问题时,有许多机器学习算法可以用于解决和预测不同类别的数据。这些算法可根据数据的特点、计算效率、模型复杂度等因素来选择。以下是一些适合分类问题的常见机器学习算法。 逻辑回归(Logistic Regr ...
数据分析师要学什么数学
2023-10-09
数据分析师需要学习哪些数学知识? 一、统计学 统计学是数据分析的基础,它为数据分析提供了数学基础和统计分析方法。统计学包括描述性统计和推论性统计两个部分。描述性统计用于总结和概括数据,推 ...
数据科学家需要具备哪些数学技能?
2023-09-25
数据科学家是当今数字时代中的重要角色之一。他们通过分析和解释数据来揭示隐藏的见解和趋势,从而为企业和组织做出决策提供支持。在这个领域中,数学技能是必不可少的工具之一。本文将探讨数据科学家需要具备的数学 ...
数据分析中如何处理大规模数据集?
2023-09-25
处理大规模数据集是现代数据分析中的一项重要任务。随着技术的进步,我们可以轻松地收集和存储大量数据,但是如何高效地处理这些数据仍然是一个挑战。在本文中,我将介绍一些常用的方法和技术,帮助您处理大规模数据 ...
如何在数据分析中处理大规模数据?
2023-09-07
在当今数字化时代,大规模数据成为了许多领域的常态。从社交媒体到物联网设备以及传感器,我们都能够收集到庞大的数据集。然而,如何高效地处理和分析这些海量数据成为了数据科学家和分析师们面临的重要挑战之一。本 ...
如何用深度学习技术预测设备故障?
2023-09-04
在现代工业生产中,设备故障可能导致生产线停滞、成本增加以及损失产能等一系列问题。因此,准确地预测设备故障并采取适当的维护措施至关重要。近年来,深度学习技术的快速发展为设备故障预测提供了新的解决方案。 ...
如何在数据建模中使用统计学?
2023-07-11
在当今数据驱动的世界中,数据建模成为了决策制定和问题解决的关键工具。统计学作为一门科学,可以帮助我们从大量的数据中提取有用的信息,并进行准确的预测和推断。本文将探讨如何在数据建模中应用统计学的方法和技 ...
如何管理和处理大规模数据集?
2023-07-04
管理和处理大规模数据集是当今数据驱动世界中的重要课题。随着技术进步和互联网的普及,各种组织和企业都能够轻松地收集和存储大量数据。然而,管理和处理这些庞大数据集需要一定的策略和工具。在本文中,将探讨如何 ...
1234 1/4

OK