基于随机梯度下降的矩阵分解推荐算法
SVD是矩阵分解常用的方法,其原理为:矩阵M可以写成矩阵A、B与C相乘得到,而B可以与A或者C合并,就变成了两个元素M1与M2的矩阵相乘可以得到M。
矩阵分解推荐的思想就是基于此,将每个user和item的内在feature构成的矩阵分别表示为M1与M2,则内在feature的乘积得到M;因此我们可以利用已有数据(user对item的打分)通过随机梯度下降的方法计算出现有user和item最可能的feature对应到的M1与M2(相当于得到每个user和每个item的内在属性),这样就可以得到通过feature之间的内积得到user没有打过分的item的分数。
本文所采用的数据是movielens中的数据,且自行切割成了train和test,但是由于数据量较大,没有用到全部数据。
代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 9 19:33:00 2017
@author: wjw
"""
import pandas as pd
import numpy as np
import os
def difference(left,right,on): #求两个dataframe的差集
df = pd.merge(left,right,how='left',on=on) #参数on指的是用于连接的列索引名称
left_columns = left.columns
col_y = df.columns[-1] # 得到最后一列
df = df[df[col_y].isnull()]#得到boolean的list
df = df.iloc[:,0:left_columns.size]#得到的数据里面还有其他同列名的column
df.columns = left_columns # 重新定义columns
return df
def readfile(filepath): #读取文件,同时得到训练集和测试集
pwd = os.getcwd()#返回当前工程的工作目录
os.chdir(os.path.dirname(filepath))
#os.path.dirname()获得filepath文件的目录;chdir()切换到filepath目录下
initialData = pd.read_csv(os.path.basename(filepath))
#basename()获取指定目录的相对路径
os.chdir(pwd)#回到先前工作目录下
predData = initialData.iloc[:,0:3] #将最后一列数据去掉
newIndexData = predData.drop_duplicates()
trainData = newIndexData.sample(axis=0,frac = 0.1) #90%的数据作为训练集
testData = difference(newIndexData,trainData,['userId','movieId']).sample(axis=0,frac=0.1)
return trainData,testData
def getmodel(train):
slowRate = 0.99
preRmse = 10000000.0
max_iter = 100
features = 3
lamda = 0.2
gama = 0.01 #随机梯度下降中加入,防止更新过度
user = pd.DataFrame(train.userId.drop_duplicates(),columns=['userId']).reset_index(drop=True) #把在原来dataFrame中的索引重新设置,drop=True并抛弃
movie = pd.DataFrame(train.movieId.drop_duplicates(),columns=['movieId']).reset_index(drop=True)
userNum = user.count().loc['userId'] #671
movieNum = movie.count().loc['movieId']
userFeatures = np.random.rand(userNum,features) #构造user和movie的特征向量集合
movieFeatures = np.random.rand(movieNum,features)
#假设每个user和每个movie有3个feature
userFeaturesFrame =user.join(pd.DataFrame(userFeatures,columns = ['f1','f2','f3']))
movieFeaturesFrame =movie.join(pd.DataFrame(movieFeatures,columns= ['f1','f2','f3']))
userFeaturesFrame = userFeaturesFrame.set_index('userId')
movieFeaturesFrame = movieFeaturesFrame.set_index('movieId') #重新设置index
for i in range(max_iter):
rmse = 0
n = 0
for index,row in user.iterrows():
uId = row.userId
userFeature = userFeaturesFrame.loc[uId] #得到userFeatureFrame中对应uId的feature
u_m = train[train['userId'] == uId] #找到在train中userId点评过的movieId的data
for index,row in u_m.iterrows():
u_mId = int(row.movieId)
realRating = row.rating
movieFeature = movieFeaturesFrame.loc[u_mId]
eui = realRating-np.dot(userFeature,movieFeature)
rmse += pow(eui,2)
n += 1
userFeaturesFrame.loc[uId] += gama * (eui*movieFeature-lamda*userFeature)
movieFeaturesFrame.loc[u_mId] += gama*(eui*userFeature-lamda*movieFeature)
nowRmse = np.sqrt(rmse*1.0/n)
print('step:%f,rmse:%f'%((i+1),nowRmse))
if nowRmse<preRmse:
preRmse = nowRmse
elif nowRmse<0.5:
break
elif nowRmse-preRmse<=0.001:
break
gama*=slowRate
return userFeaturesFrame,movieFeaturesFrame
def evaluate(userFeaturesFrame,movieFeaturesFrame,test):
test['predictRating']='NAN' # 新增一列
for index,row in test.iterrows():
print(index)
userId = row.userId
movieId = row.movieId
if userId not in userFeaturesFrame.index or movieId not in movieFeaturesFrame.index:
continue
userFeature = userFeaturesFrame.loc[userId]
movieFeature = movieFeaturesFrame.loc[movieId]
test.loc[index,'predictRating'] = np.dot(userFeature,movieFeature) #不定位到不能修改值
return test
if __name__ == "__main__":
filepath = r"E:\学习\研究生\推荐系统\ml-latest-small\ratings.csv"
train,test = readfile(filepath)
userFeaturesFrame,movieFeaturesFrame = getmodel(train)
result = evaluate(userFeaturesFrame,movieFeaturesFrame,test)
在test中得到的结果为:
NAN则是训练集中没有的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30