
用R语言进行简单线性回归分析,数据出自何晓群--应用回归分析,语言如下所示:
x y
3.4 26.2
1.8 17.8
4.6 31.3
2.3 23.1
3.1 27.5
5.5 36
0.7 14.1
3 22.3
2.6 19.6
4.3 31.3
2.1 24
1.1 17.3
6.1 43.2
4.8 36.4
3.8 26.1
#-------------------------------------------------------------#数据准备
fire <- read.table('D:/fire.txt', head = T)
#-------------------------------------------------------------#回归分析
plot(fire$y ~ fire$x)
fire.reg <- lm(fire$y ~ fire$x, data = fire) #回归拟合
summary(fire.reg) #回归分析表
anova(fire.reg) #方差分析表
abline(fire.reg, col = 2, lty = 2) #拟合直线
#-------------------------------------------------------------#残差分析
fire.res <- residuals(fire.reg) #残差
fire.sre <- rstandard(fire.reg) #学生化残差
plot(fire.sre)
abline(h = 0)
text(11, fire.sre[11], label = 11, adj = (-0.3), col = 2) #标注点
#-------------------------------------------------------------#预测与控制
attach(fire) #连接
fire.reg <- lm(y ~ x) #这种回归拟合简单
fire.points <- data.frame(x = c(3.5, 4))
fire.pred <- predict(fire.reg, fire.points, interval = 'prediction', level = 0.95) #预测:置信区间
fire.pred
detach(fire) #取消连接
--------------------------------------------------------------------------------------------------
#附自编的过程程序:(R最大的好处是可以自己编想要的程序和函数,尤其没有内置函数的时候)
fire <- read.table('D:/fire.txt', head = T)
attach(fire)
--------------------------------------------
lxy <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x)) * (y[i]-mean(y))
sum <- sum + sum0}
sum}
---------------------------------------------------------------------------------
#用这个就不需要循环了
lxy <- function(x){
mid <- (x - mean(x)) * (y-mean(y))
sum <- sum(mid)
sum}
#对于数据框、列表等数据对象要善用apply()函数。
---------------------------------------------------------------------------------
lxx <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x))^2
sum <- sum + sum0}
sum}
Lxx <- lxx(x)
Lyy <- lxx(y)
Lxy <- lxy(x)
b1 <- Lxy / Lxx; b1 #回归系数斜率
b0 <- mean(y) - b1 * mean(x); b0 #回归系数截距
residu <- y - (b0 + b1*x); residu #残差
r <- Lxy / sqrt(Lxx * Lyy); r #相关系数
rsqure <- r^2; rsqure #决定系数
adrsqure <- 1 - ((length(x)-1)/(length(x)-2))*(1-r^2) #调整后的决定系数
----------------------------------------------------------------------------------
esrequre <- function(x){ #求标准差平方估计值
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
residusqure <- sum/(length(x)-2)
residusqure}
esterreq <- esrequre(x); esterreq #标准差平方估计值(MSE)
ester <- sqrt(esrequre(x)); ester #标准差估计值(回归分析表给出的标准误差)
val_t <- b1*sqrt(Lxx) / ester; val_t #检验回归系数斜率b1的t值
SSe <- function(x){ #求残差平方和
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
sum}
SSE <- SSe(x); SSE #残差平方和
MSE <- SSE/(length(x)-2); MSE #残差均方和
SSr <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- ((b0 + b1*x[i]) - mean(y))^2
sum <- sum + sum0}
sum}
SSR <- SSr(x); SSR #回归平方和
MSR <- SSR/1; MSR #回归均方和
val_F <- SSR / MSE; val_F #检验回归方程F值
hi <- 1/length(x) + (x-mean(x))^2/Lxx #杠杆值
ZRE <- residu / ester; ZRE #标准化残差
SRE <- residu/(ester*sqrt(1-hi)); SRE #学生化残差
Y <- function(x){b0 + b1 * x} #点估计
Y(3.5)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26