京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用R语言进行简单线性回归分析,数据出自何晓群--应用回归分析,语言如下所示:
x y
3.4 26.2
1.8 17.8
4.6 31.3
2.3 23.1
3.1 27.5
5.5 36
0.7 14.1
3 22.3
2.6 19.6
4.3 31.3
2.1 24
1.1 17.3
6.1 43.2
4.8 36.4
3.8 26.1
#-------------------------------------------------------------#数据准备
fire <- read.table('D:/fire.txt', head = T)
#-------------------------------------------------------------#回归分析
plot(fire$y ~ fire$x)
fire.reg <- lm(fire$y ~ fire$x, data = fire) #回归拟合
summary(fire.reg) #回归分析表
anova(fire.reg) #方差分析表
abline(fire.reg, col = 2, lty = 2) #拟合直线
#-------------------------------------------------------------#残差分析
fire.res <- residuals(fire.reg) #残差
fire.sre <- rstandard(fire.reg) #学生化残差
plot(fire.sre)
abline(h = 0)
text(11, fire.sre[11], label = 11, adj = (-0.3), col = 2) #标注点
#-------------------------------------------------------------#预测与控制
attach(fire) #连接
fire.reg <- lm(y ~ x) #这种回归拟合简单
fire.points <- data.frame(x = c(3.5, 4))
fire.pred <- predict(fire.reg, fire.points, interval = 'prediction', level = 0.95) #预测:置信区间
fire.pred
detach(fire) #取消连接
--------------------------------------------------------------------------------------------------
#附自编的过程程序:(R最大的好处是可以自己编想要的程序和函数,尤其没有内置函数的时候)
fire <- read.table('D:/fire.txt', head = T)
attach(fire)
--------------------------------------------
lxy <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x)) * (y[i]-mean(y))
sum <- sum + sum0}
sum}
---------------------------------------------------------------------------------
#用这个就不需要循环了
lxy <- function(x){
mid <- (x - mean(x)) * (y-mean(y))
sum <- sum(mid)
sum}
#对于数据框、列表等数据对象要善用apply()函数。
---------------------------------------------------------------------------------
lxx <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- (x[i] - mean(x))^2
sum <- sum + sum0}
sum}
Lxx <- lxx(x)
Lyy <- lxx(y)
Lxy <- lxy(x)
b1 <- Lxy / Lxx; b1 #回归系数斜率
b0 <- mean(y) - b1 * mean(x); b0 #回归系数截距
residu <- y - (b0 + b1*x); residu #残差
r <- Lxy / sqrt(Lxx * Lyy); r #相关系数
rsqure <- r^2; rsqure #决定系数
adrsqure <- 1 - ((length(x)-1)/(length(x)-2))*(1-r^2) #调整后的决定系数
----------------------------------------------------------------------------------
esrequre <- function(x){ #求标准差平方估计值
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
residusqure <- sum/(length(x)-2)
residusqure}
esterreq <- esrequre(x); esterreq #标准差平方估计值(MSE)
ester <- sqrt(esrequre(x)); ester #标准差估计值(回归分析表给出的标准误差)
val_t <- b1*sqrt(Lxx) / ester; val_t #检验回归系数斜率b1的t值
SSe <- function(x){ #求残差平方和
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- residu[i]^2
sum <- sum + sum0}
sum}
SSE <- SSe(x); SSE #残差平方和
MSE <- SSE/(length(x)-2); MSE #残差均方和
SSr <- function(x){
sum <- 0
sum0 <- 0
for(i in 1:length(x)){
sum0 <- ((b0 + b1*x[i]) - mean(y))^2
sum <- sum + sum0}
sum}
SSR <- SSr(x); SSR #回归平方和
MSR <- SSR/1; MSR #回归均方和
val_F <- SSR / MSE; val_F #检验回归方程F值
hi <- 1/length(x) + (x-mean(x))^2/Lxx #杠杆值
ZRE <- residu / ester; ZRE #标准化残差
SRE <- residu/(ester*sqrt(1-hi)); SRE #学生化残差
Y <- function(x){b0 + b1 * x} #点估计
Y(3.5)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23