
郭华东:空间地球大数据—地球科学研究的新引擎
大数据对科技发展正在产生重要影响,同时也为地球科学的深入研究带来了重要发展机遇。本期,我们邀请中国科学院院士郭华东通过分析对地观测技术及大数据的发展,探讨空间地球大数据理念,剖析空间地球大数据科学内涵,讨论空间地球大数据与数字地球关系,分析空间地球大数据对推动地球系统科学及全球变化发展的潜力,并在此基础上提出空间地球大数据服务于“一带一路”等经济建设领域的建议。
A 大数据是国家新型战略资源
19世纪70年代以来,随着第二次工业革命的爆发,各种新技术、新发明层出不穷,以文字为载体的数据量大约每10年翻一番;从工业化时代进入到信息化时代后,信息技术革命以前所未有的方式对社会、科技、经济变革的发展起着决定作用,数据量以每3年翻一番的速度持续增长;近10年来,随着计算机技术和互联网的快速发展,音频、视频、文字、图片等半结构化、非结构化的数据大量涌现,社交网络、物联网、云计算被广泛应用,使得数据存储量、规模、种类飞速增长,大数据时代已悄然来临。
2014年4月,国际数据公司(IDC)发布的第七份“数字宇宙”研究报告指出,全球数据总量将以每两年翻一番的速度持续增长。大数据的重要性犹如工业社会的“石油”资源,谁掌握了数据,谁就掌握了主动权。大数据已成为信息主权的一种表现形式,将是继边防、海防、空防之后,另一个大国博弈的空间。
可以说,大数据正在改变科学的发展。大数据技术与应用已成为继实验、理论和计算模式之后的数据密集型科学范式的典型代表,正在带来科研方法论的创新:科学大数据将复杂性、综合性、全球性和信息与通信技术高度集成性等诸多特点融于一身,其研究方法也正在从单一学科向多学科、跨学科方向转变、从自然科学向自然科学与社会科学的充分融合方向过渡、从个人或者小型科研团体向国际科技组织方向发展。另外,科学家不仅通过对广泛的数据进行实时、动态地监测与分析来解决科学问题,更是将数据作为了科学研究的对象和工具,即数据驱动的知识发现。这正是科学大数据的核心价值所在。
B 空间地球大数据驱动地球科学发展
所谓空间地球大数据,是指从空间观测地球获取地表及次地表的大数据,并通过数据密集型科学分析人与地球和自然现象的规律。空间地球大数据具有海量(高分辨率、高动态新型传感器波段数量多、光谱和空间分辨率高、数据速率快、周期短)、多源(数据来源和获取手段多样)、多时相(采样间隔缩短,数据获取频率幅度增大)等特征,因其有宏观、客观、快速、准确、全面获取数据的特点和能力,对地球科学,尤其是地球系统科学的发展起到了革命性的推动作用,在环境、资源、灾害等领域有重要作用和经济社会价值。
地球系统科学以地球为一个巨型系统研究,需要空间地球观测数据的参与,从而降低系统复杂度,使建模和求解成为可能。在地球科学长期发展的基础上,半个世纪以来从空间观测地球的新视野新方法,不断加深着对地球的理解特别是宏观认识。随着遥感、导航定位、地球物理等卫星数量和其他平台的不断增加以及观测仪器类型的多样化,空间地球大数据正在汇入大数据研究的主流,为地球科学研究带来了新机遇,作为思维与方法论的创新与革命,有望为推动地球科学深度发展并产出重大科学发现作出贡献。
我国空间对地观测技术经过40年的发展,自主卫星遥感技术、北斗导航卫星技术等数据获取技术得到长足的发展,相应的地面接收基础设施和数据处理系统水平、规模与服务能力也与国际同行。相信空间地球大数据时代的到来,以及数据驱动科学范式的建立,将大大推动包括数字地球、全球变化、未来地球、灾害科学等领域的研究及空间地球信息科学的学科发展,并将为我国“一带一路”等国家战略提供支撑服务,包括沿线国家的生态环境、资源能源、农业、减灾、自然与文化遗产保护等重大问题方面发挥历史性作用。
C 加快国家大数据建设进程
大数据是知识经济时代的战略高地,大数据是国家新型战略资源,大数据正在改变人类生活及对世界的深层理解。在大数据时代,庞大繁杂的数据对社会、科技、经济的发展将发挥支撑促进作用,其所蕴含的战略价值已引起多数发达国家政府重视,一些国家和国际组织已将大数据研究提升到国家和国际重大战略层面,相继出台了大数据战略规划和配套法规促进大数据应用与发展,这势必对未来科技与经济发展带来深远影响。
目前,我国在该领域面临难得的发展机遇,与世界各国同处大数据起步阶段:我国的计算机用户数全球第一,互联网用户数全球第一,移动互联网用户数全球第一;我国拥有的数据现在占全球16%左右,2020年这一比例将高达21%;我国发表的大数据论文目前国际排名第二位,正在呈现快速发展趋势。如此情势下,完全有条件借国家全面深化改革的东风,优化体制机制,整合各类资源,将大数据上升为国家战略,加强大数据的顶层设计,系统规划,通过出台大数据国家行动计划、建立大数据国家平台及国际联盟等举措,把大数据做大做强,使大数据成为服务国家、引领世界的一个引擎。
为此,提出加快国家大数据建设进程的三点建议:
第一,将大数据定位为国家战略。大数据应该是国家战略,其发展应体现核心性国家意志,应加强大数据的顶层设计,系统规划。同时,注重大数据政策法规、伦理道德问题。大数据监管或政策应先行,监管可遵循“红绿黄灯”原则,尤其要加快绿灯政策和绿灯配套措施建设。目前,包括数据共享在内的我国数据政策还在徘徊阶段,大家期待形成一个绿灯闪烁、大国数据潮流破浪涌动的局面。
第二,出台大数据国家行动计划。构建大数据国家重大基础设施,建设一批科学大数据应用服务中心,一批学科交叉大数据科学研究中心,推出人才培养计划。设立研究专项,比如李克强总理数次提到胡焕庸线是否可以破解的“三问”,即“胡线”该不该打破?是否可以打破?如何打破?“胡线”的形成历经近千年的长时间尺度和跨越几千公里的大空间尺度,蕴藏着超长时空序列科学内涵,可通过大数据研究为总理“三问”提供科学依据。
第三,建立大数据国家组织及国际联盟。例如,面向国家“一带一路”战略,构建丝绸之路和海上丝绸之路大数据联盟。以大数据为抓手,为“一带一路”注入可操作、可凝聚、能引领的方向,形成出钱的基金会—出思想的科学家—出成果的大数据基础设施等各方联动大格局,让大数据成为“一带一路”建设的一个引擎,让大数据成为各国共建“一带一路”的和平使者,让大数据科学之光普照“一带一路”的现在和未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10