敏捷数据分析方法论革命来袭_数据分析师考试
想必大家都听说过敏捷开发,敏捷开发是以用户的需求进化为核心,采用迭代、循序渐进的方法进行软件开发。随着敏捷概念的深入人心,数据分析方法论也发生了革新,敏捷数据分析逐渐进入主流视野。本文将简要介绍到底何为敏捷数据分析。
传统VS敏捷
我们先来看一下传统的数据分析流程:
解读业务战略目标–>确定目标分解的量化KPI–>确定KPI的计算公式和所需字段–>确定所需字段来自于哪些数据库的哪些表–>数据建模–>预先汇总成二次表和Cube–>结果展示。
由于需要建模和打CUBE,这一流程通常需数月才能完成。
现在,取代传统数据分析流程的,是快速迭代式分析。敏捷数据分析不必在开始时花很长的时间构思大而全的分析指标体系,而是低成本快速迭代,几分钟就做好一个当前想要分析的结果,通过敏捷数据分析工具实现动态切换视角,灵活展示数据,日积月累,指标自然越来越丰富,计算公式也越来越符合业务逻辑,这时再体系化。下面的演示视频将帮助大家了解如何通过敏捷数据分析工具在几分钟时间内实现自己的分析需求。
为什么传统数据分析无法实现快速迭代分析的高效?因为在过去这么多年以来,我们对于大数据海量数据的计算能力达不到比较理想的要求,所以我们才需要IT人员用通过建模等方式提前把数据计算汇总好,随着现在大数据的技术相对来讲都日趋成熟和完善,分布式计算,内存计算、列存储等比较成熟的技术架构,采用这种新的办法去处理数据的性能,已经比以前提升了几十倍甚至更高。
符合迭代思维
快速迭代式的敏捷数据分析有什么好处?首先,这种分析方法十分符合互联网思维中的迭代思维。企业的分析指标不可能一开始想得非常全面,本身就是迭代逐步形成的。以电商行业为例,电子商务的数据可分为两类:前端行为数据和后端商业数据。前端行为数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据;而后端数据更侧重商业数据,比如交易量、投资回报率,以及全生命周期管理等。
在最初期,电商行业最关注的是那些核心指标:UV、转化率、客单价、毛利率、推广ROI、重复购买率,人们在核心指标的基础上逐步对媒体、用户、商品、营销等对象做详细分析;同时在客服、商品、仓储物流等内部运营绩效方面进行监控。这些数据现在又可以被归纳发展为4个方面,基础访问数据、商品销售数据、营销推广数据、用户数据,其中基础数据中包括网站的访问数据、网页链接点击、来源跳出等等。商品销售数据关系到品类、销售多少、影响因素等。营销数据包括投入产出的投资回报率,更多地是跟其他几方面的数据进行混合分析。用户数据包括分析用户区域、购买频率、客户构成、忠诚度、偏好等等。
适应变化需求
另一方面,企业的数据分析需求可能是随时变化的,快速迭代的敏捷数据分析能够满足业务人员不断变化的分析需求。在最初期,业务人员无法全部确定自己的数据分析需求。因此做数据分析必须先了解业务。只有知道业务问题在哪里,才能知道需要分析什么数据,而不是从数据表象来猜测业务,这是因果倒置。而且每个公司在不同阶段的数据分析的切面是变化的。比如京东当年与当当大战的时候,刘强东每天要了解图书品类的数据。但是现在他可能就不需要这样。
敏捷的快速迭代式数据分析能够解决企业绝大部分的分析需求,同时节省了时间成本和金钱。最重要的是,敏捷数据分析通过对大数据进行高速捕获和实时的分析,帮助企业获取核心业务和战略决策所需的关键信息,提升企业经营管理和战略决策水平,创造商业价值,这也许是对大数据价值的最好诠释。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28