大数据”时代来临 CIO你准备好了么_数据分析师考试
未来的十年将是一个“大数据”引领的智慧科技的时代。随着社交网络的逐渐成熟,移动带宽迅速提升,云计算、物联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度将比历史上的任何时期都要多,都要快。“大数据”时代的脚步悄然而至。
请试想一下:当40亿部手机、10亿部电脑,随时随地都在向分布在全球各地的服务器发送数据;当你开着车对着“语音助手”说:“我要在附近找一家最罗曼蒂克的餐厅。”之后,短短一两秒就能得到您满意的答案时。其背后向您提供服务所涉及到的定位、资料检索、存取、数据交换等一系列动作是何等的复杂。而这一系列动作正是由“大数据”所支撑,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。大量、多样、快速给现在的IT业提出了巨大挑战。当今的网络环境、存储以及搜索架构越来越不适应这种新的变化。而大数据的到来将促使这些领域产生新的变革。为了让业界对大数据的价值和应用有更好的认识,将于4月17、18日在北京国家会议中心举行第四届CCS云计算高峰论坛暨展览将汇集业内知名的领导企业和政企IT主管,多角度、深入探讨大中国大数据产业。以下三点为本次大会讨论部分重点点:
问题一:网络架构不适应“大数据”时代
传统的网络架构已经不能满足现代网络应用需求。传统的网络结构设计是以客户端向服务器发出请求,由服务器应答返回结果给客户的垂直结构。而在大数据时代,这种垂直结构的服务请求将变得越来越少,取而代之的是水平结构的横向请求服务。“大数据”时代,大量的数据都存储在分布广泛、不同地域、各种类型的服务器中。当用户发出一个搜索或查询请求时,最多的运算是服务器之间的信息交换,最后将结果返回给用户。新一代网络架构要适应Web2.0时代的水平服务应用。
问题二:数据中心将面临巨大压力
“大数据”时代对数据中心的访问量是前所未有的。更多的网络设备将同时访问数据中心,这包括智能手机、平板电脑、台式机、笔记本、甚至正在马路上行驶的汽车。此时,数据中心面临的压力将是难以想象的。正如铁道部去年年底推出的在线订票系统,采用的系统不可谓是当今最先进的系统,但当有几亿人同时访问的时候,网站所有服务都陷入了瘫痪。这是所有工程人员难以预料的。“大”到一定程度的时候,任何事情都可能发生。随着全球经济一体化的深入,未来数据中心要面临的不仅是一个中国地区的访问量,而是全球几十亿的访问量。还是那句话:“用户你伤不起。”
问题三:数据仓库架构不适应高速反应的要求
当今数据库里的内容不仅仅是多,而且结构已发生了极大改变,不是以二维表的规范结构存储。大量的数据是非结构化的办公文档、文本、图片、XML、HTML、各类报表、图片和音频/视频等。并且在企业的所有数据中是大量且增长迅速的。企业80%的数据是非结构化或半结构化的,结构化数据仅有20%。并且全球结构化数据增长速度约为32%,而非结构化数据增速高达63%。预计今年非结构化数据占有比例将达到互联网整个数据量的75%以上。面临如此大量的非机构化数据,其移动和修改将耗费大量的人力物力,读取效率也将越来越低。当然这包括了物理存储和逻辑存储软、硬件两个层面。
当然“大数据”时代对IT业各方面的影响都将巨大且意义深远。此次会展不仅从大数据角度剖析对产业界的挑战与机遇,更有分会场《云计算基础架构》、《云应用服务》、《云计算?数据中心》等息息相关的领域,将为现场的专业观众带来全方位的产业观察和案例分享。
同期同地还将举行CENCE中国企业网络通信大会暨展览,包括UC/协作、呼叫中心、多媒体融合通信指挥调度/运营商增值业务及平台等专场的精彩内容。历经十二届的洗礼,CENCE中国企业网络通信大会暨展览已发展成为中国企业网络通信领域的标杆展会。预计会展将吸引约3千名来自运营商、政府部门、金融、电力、能源、医疗、教育、交通、物流、教育、制造业以及上市公司,科研院所中的信息部门主要负责人和企业IT主管以及专家学者等具有行业代表性的相关企事业单位人员参与此次盛会。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22