本文从个人的角度去谈一下如何使用数据挖掘帮助零售商提升生意,让数据真正地去指导企业经营,最大限度地发挥数据提供商业决策的作用。
第一、开展会员制能够帮助企业采集更多会员数据,更有利于开展数据挖掘的工作,同时也有利于培养客户忠诚度。
在实施会员制的时候,必须要特别注意两个关键信息的采集:会员卡ID、客户联系号码或者邮箱,因为这两个关键信息对信息采集及后期的精准营销有很大 的帮助作用。而微信、微博等社交媒体的横行,若零售商能够通过相关活动让客户关注企业的微信、微博,对培养客户忠诚度也是有很大的帮助。
会员制有助于为企业培养众多忠实的顾客,建立起一个长期稳定的市场,提高企业的竞争力。通过会员制,可以有效稳定老客户,同时开发新顾客。因为零售 商给会员提供的是优惠的价格,对新顾客吸引力很大,同时大部分会员卡是可以外借的,也给新客户提供了机会,大大增加其成为会员的可能性。
会员制营销能够促进企业与顾客双向交流。顾客成为会员后,通常能定期收到商家有关新商品的信息并了解商品信息和商家动态,有针对性地选购商品。除此之外,企业能够及时了解消费者需求的变化,以及他们对产品、服务等方面的意见,为改进企业的营销模式提供了依据。
第二、开展零售商的数据挖掘项目,必须要重点提供以下几个表的关键信息:
销售表:卡号、销售店ID、销售日期、产品名称、产品价格、销售数量、销售金额、折扣等信息。
产品表:产品ID、产品名称、建议零售价、实际销售价、一级类别、二级类别、三级类别、四级类别、品牌等信息。
客户表:卡号、发卡店ID、城市、号码、邮箱、企业或个人标识、企业名称、所在行业、地址等。
零售店表:店ID、店名、所属城市、店等级等。
其中销售表、产品表、客户表比较重要,而产品表梳理对数据分析及数据挖掘团队而言,是做好项目的关键,必须要耗费大量的时间。
第三、与零售商明确数据挖掘目的,能够让分析团队与零售商之间获得更大的信任,同时有利于项目的顺利开展。
成熟的分析团队,比较关注零售商的商业出发点,从客户商业价值出发,抓住客户关注点,一点一点地做好相应的落地分析工作。
客户最常见想让数据帮助其解答的几大问题:
如何让活跃的客户购买更多的产品,最大程度地释放其价值?
如何唤醒沉默客户,让其转化为活跃客户?
哪些客户是我的重点客户群?其有什么样的特征?
哪些重点客户流失了?为什么流失?后期怎样开展挽留手段?
……
第四、通过数据开展客户细分,明确各个群体的特征。
对于零售数据而言,必须要深入零售行业两大客户群:企业及个人。企业客户的特征和个人客户的特征有很大的区别。
企业特征主要表现:采购量比较大,经常进行团购或批发,销售量和销售额都比较大,为零售商的重点客户群。尽管数量不多,但是却贡献了零售商的60% 以上的销售额。而企业的行为经常有:超大型采购、中型采购、一般采购。对企业数据挖掘,需要深入了解企业的所属行业、采购额度、采购规律、采购产品偏好、 是否流失、流失的原因调查等信息,有助于帮助零售商开展相应的营销策略。
对于个人,则需要关注哪些是活跃客户、哪些是新增客户、哪些是沉默客户、客户价值是怎样的、哪些节日是重点高峰期、偏好的产品是哪些等等,这些有助于零售商开展销售、备货等工作。
第五、结合5W1H分析法开展零售分析与挖掘。
What:销售情况怎么样?有多少用户?来了多少次?每次消费多少钱?买了什么东西…….
Where:哪些门店销售最好?为什么呢?(交通、地区等) …….
When:哪个月份销售得最好?哪个节日是销售高峰期…….
Who:是哪些客户?有什么样的特征?偏好买哪些产品?产品规格是怎么样的…….
Why:为什么买哪些产品?为什么买那么多?会不会继续购买…….
How:怎样提高客户重购?怎样唤醒客户?怎么进行交叉销售?怎样帮助铺货……
第六、协助零售商开展营销活动设计、营销活动执行、营销评估与优化。
因为数据挖掘是一个闭环的流程,不是撰写挖掘报告、输出营销客户名单就是项目成功的,必须协助零售商开展相应的营销设计、营销活动执行、营销评估及优化工作。从而确保数据挖掘有效落地,为客户真实产生商业价值,扩大生意规模。
营销活动设计常有:优惠打折、派发试用装、赠送礼品、多倍积分等,可以通过不同的细分客户群有针对性地开展不同的营销活动,并计算不同群体及不同活动的投入产出比,便于后期不断优化数据挖掘规则。
第七、关键成果固化IT系统,实现数据挖掘成果固化落地。
对于零售商而言,数据挖掘是个不大不小的投入,对于关键的成果输出,总希望能够把成果规则进行IT固化,实现自动代替手工操作,这个时候经常需要搭建一个成果固化模块或系统,让数据挖掘能够最大限度帮助企业。
数据分析咨询请扫描二维码
自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13爬虫技术在数据分析中扮演着至关重要的角色,其主要作用体现在以下几个方面: 数据收集:爬虫能够自动化地从互联网上抓取大量数 ...
2024-11-13在数据分析中,数据可视化是一种将复杂数据转化为图表、图形或其他可视形式的技术,旨在通过直观的方式帮助人们理解数据的含义与 ...
2024-11-13在现代银行业中,数字化用户行为分析已成为优化产品和服务、提升客户体验和提高业务效率的重要工具。通过全面的数据采集、深入的 ...
2024-11-13在这个数据飞速增长的时代,企业若想在竞争中占据优势,必须充分利用数据分析优化其营销策略。数据不仅有助于理解市场趋势,还可 ...
2024-11-13数据分析行业的就业趋势显示出多个积极的发展方向。随着大数据和人工智能技术的不断进步,数据分析在各行各业中的应用变得越来越 ...
2024-11-13市场数据分析是一门涉及多种技能和工具的学科,对企业在竞争激烈的市场中保持竞争力至关重要。通过数据分析,企业不仅可以了解当 ...
2024-11-13数据分析与数据挖掘是数据科学领域中两个关键的组成部分,它们各有独特的目标、方法和应用场景。尽管它们经常在实际应用中结合使 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13在如今这个数据驱动的时代,数据分析能力已经成为许多行业的重要技能。无论是为工作需要,还是为了职业转型,掌握数据分析都能够 ...
2024-11-13作为一名业务分析师,你肩负着将业务需求转化为技术解决方案的重任。面试这一角色时,涉及的问题多种多样,涵盖技术技能、分析能 ...
2024-11-13自学数据分析可能看似一项艰巨的任务,尤其在开始时。但是,通过一些策略和方法,你可以系统地学习和掌握数据分析的相关知识和技 ...
2024-11-10Excel是数据分析领域中的一款强大工具,它凭借其灵活的功能和易用的界面,成为了许多数据分析师和从业者的首选。无论是简单的数 ...
2024-11-10在快速发展的商业环境中,数据分析能力已经成为许多行业的核心竞争力。无论是初学者还是经验丰富的专家,搭建一个有效的数据分析 ...
2024-11-10在如今的数据驱动世界,数据分析师在各行各业中扮演着至关重要的角色。随着企业越来越依赖数据决策,数据分析职位的需求不断增加 ...
2024-11-10