大数据进入价值变现的2.0时代_数据分析师考试
移动互联网和传感器出现推动了大数据时代的出现,大量非结构化数据的出现令数据处理面临了难题,在大数据时代初期,有关大数据应用主要集中在收集数据,存储数据、处理数据等方面,解决的是主要是数据效率问题。当数据效率问题被解决之后,大数据价值变现问题将摆到面前,也就是说大数据将进入2.0时代(价值变现时代)。
一大数据1.0时代的特征
大数据1.0时代的主要特征是发现大数据,存储和处理大数据。大数据4个V中的前3个V(大量的数据、多变的数据、高速的数据)都被有效的诠释了。但是最重要等一个V(Value价值),还没有得到良好的利用,因此很多学者都在唱衰大数据,认为大数据的概念超过了实际应用价值,大数据更像是美国IT巨头和咨询公司为销售其产品和服务进行的炒作。 Hadoop,Hive,Mapreduce,Spark,Storm,R语言,Python,Julia,Scala,Kafka,Octave,GO 成为了大数据时代的热点词语。
大数据时代是历史的必然,特别是移动互联网出现之后,传感器和社交活动产生了大量的LBS数据和用户行为数据。这些数据具有巨大的商业价值,意味这大数据2.0时代的到来。回顾历史,在过去的几千年以来,人类社会就一直在利用数据来认识社会,掌握自然社会规律,不断进化,大数据的出现将会加速这种社会进化。
二大数据对金融行业的意义
金融行业是个高度信息化的行业,特别是占了金融产业半壁江山的银行,从最初的核心银行系统到 ATM取款机,从信用卡到网银系统,从固定的网点到直销银行,银行一直都是高度依赖信息系统和数据的行业。在未来,银行将通过移动互联网来降低渠道成本,通过大数据营销来获取客户;随着中国人投资和保险意识的成熟,证券行业和保险行业将迎来黄金发展期。
大数据对于金融行业具有重要的意义,如果将金融行业比喻成一辆汽车,信息系统就是汽车的发动机,大数据就是燃油。发动机决定金融行业商业模式的领先程度,燃油决定金融企业的发展速度。金融行业借助于大数据将会获得更快的发展速度,更低的成本,更多的先发优势。大部分金融行业在大数据应用还处于初级阶段,大数据的价值还没有被充分发掘,特别是移动大数据没有被充分利用。
金融行业大数据应用还是处于1.0的效率时代。主要解决大数据的收集,存储和处理问题,数据挖掘也还以结构化数据为主,以自身数据为主,以报表应用为主。
三 大数据的2.0时代
2015年起,大数据将进入2.0时代,进入大数据变现的2.0时代。如果我们定义大数据1.0是大数据的效率时代,那么大数据的2.0时代就是实现大数据变现的价值时代,下面介绍一下大数据金融2.0时代的主要特征。
1. 移动App运营统计分析平台洞察客户
银行使用的核心业务系统、渠道系统、客户关系管理系统等产生的数据都为结构化数据,可以利用银行现有的数据仓库软件进行存储,也可以借助于数据挖掘软件进行分析。但是银行的移动App产生的数据绝大多数为非结构化数据,表现为用户点击数据、日志数据等用户行为数据,都是非结构化数据,不能在银行结构化数据库里面进存储和处理,只能利用基于大数据技术的移动App运营统计平台进行处理。
移动App大数据运营统计分析平台是基于Hadoop技术的非结构化数据存储和处理平台,利用 HIVE数据挖掘技术,提供数据采集,数据清洗、数据归类和分析的功能。提供客户登陆时间,留存时间,活跃程度,用户点击习惯,用户行为分析、事件定义,事件管理、预警分析等功能。平台可以在以下几个方面帮助银行了解客户在App中的行为,为优化App提供数据支持,提高客户体验。
l 用户使用习惯情况统计和用户生命周期管理
l 渠道和设备管理,为用户画像提供数据支持
l 用户体验洞察和事件预警分析
平台提供移动APP的反馈数据,银行可以通过点击数据和时间长短来了解客户体验,为移动APP 界面设计、按钮布局、交易流程等提供数据支撑。移动App运营统计分析平台是洞察客户的传感器,利用反馈对数据来分析客户行为,为优化移动APP提供有力支持。在移动互联网时代,银行如果想提高对用户对认知、洞察客户,取得移动金融的领先优势,必须装备移动App运营统计分析平台,其是玩转移动金融的必备武器。
2. 大数据营销平台(DMP)的出现
金融行业在大数据2.0时代需要一个能够将银行数据转化为价值的平台,实现金融大数据的变现。 DMP就是承担这个使命的平台,其主要负责收集金融行业自身的交易数据,经过数据分析后,为用户打上标签,结合外部数据,将帮助金融行业实现大数据精准营销和获客。DMP平台简单功能至少包括用户标签,用户画像,精准营销渠道,自我算法优化,数据可视化,外部数据引入,广告监测等功能。
DMP将成为大数据金融2.0时代的典型应用,也是金融行业进入大数据金融时代必备的平台,就像大数据1.0时代的Hadoop一样,DMP的出现将会加速金融行业大数据商业应用的进化,真正将大数据同金融行业的实际业务结合起来,为金融行业的业务发展提供加速能源。DMP承载了巨大的价值应用,其可以帮助金融行业短时间进行数据变现。
金融企业可以有借助DMP同互联网巨头BA进行竞争,取得商业领先优势。DMP将会成为未来金融行业大数据应用的趋势,特别是引入移动互联网大数据和DSP的数据的DMP,将会成为金融行业大数据应用标准。
3. 移动大数据成为基础数据
金融行业如果想在大数据金融2.0时代取得领先,就必须重视移动数据,除了将自身银行APP应用中行为数据进行收集和处理,金融行业必须要打破自身的数据闭环,象互联网企业一样,坚持开放心态,寻找具有价值的外部数据。
移动互联网数据将成为金融行业大数据应用的基础数据。移动大数据具有金融行业传统数据不具备的特点。移动App的数据由于包含了位置信息,反映用户的生活轨迹和个人喜好,可以认为移动数据是活的数据,是更有价值的数据。金融行业应该同具有移动大数据的互联网厂商进行合作,坚持平等协作精神,共同开发开发自身数据金矿。
金融行业在选择合作伙伴时需要考虑的互联网三座大山的竞争,同这些大数据巨头合作时需要谨慎考虑,建议同新兴的、独立的移动互联网大数据公司合作,掌握合作主动权和大数据应用控制权,实现大数据应用的双赢。移动互联网行业中的 TalkingData(腾云天下)拥有大量移动互联网数据,是独立的第三方数据提供方,已经为招商银行、兴业银行、平安银行、国信证券、海通证券等金融企业提供了完整的移动大数据解决方案,获得了较好大数据变现效果,传统金融行业可以进行借鉴。
4. 标签将成为大数据金融的重要武器
数据标签表述既简单又复杂,简单的讲就是描述一类用户或行为属性集和,其具有相关性和大概率特点。标签可以很宽也可以很细,完全取决于标签创建者的经验。因此标签的精准定义成为大数据金融应用的关键所在。
标签作为大数据金融2.0时代的最基本元素,正在成为大数据金融的重要武器。很多大数据金融的应用都依赖于标签,简单的讲标签的细化程度和覆盖范围都将体现金融企业的大数据应用的成熟度,标签可以分为用户属性,位置信息、游戏偏好、应用兴趣、消费偏好等类型,定义标签的方法可以从社会人的特点和具体商业需求出发,定义出金融行业需要的客户群体信息。
大数据标签是用户画像、精准营销、风险监测等金融大数据应用的基础,金融行业大数据标签的定义是具有挑战的话题,并将成为大数据金融2.0时代的热点话题。
5. 用户画像将体现在CRM系统中
金融行业正在从以账户为中心的商业模式转向以客户为中心的商业模式,银行、证券、基金、保险企业纷纷上线CRM系统,将客户关系管理作为其主要的业务之一,并希望通过对客户需求的挖掘来推荐产品或开发产品。
在大数据2.0时代,CRM系统的数据除了用户的基本数据和信用数据之外,还需要增加用户画像信息。CRM应该包含以客户为中心的用户习惯特性,用户喜好特性,用户轨迹,用户消费趋势等信息,这些都需要大数据平台DMP提供。具有了用户画像信息的 CRM将会大大增强金融行业的商业竞争优势,当金融行业客服人员或客户经理打电话同客户进行沟通时,用户画像将提供高价值的信息,洞察客户,拉近金融企业同客户的距离,了解客户需求,提高客户满意度和市场营销转化率。
四金融企业如何取得先发优势
进入大数据2.0时代之后,拥有丰富数据的银行、证券、保险、基金面临来自互联网巨头、互联网金融企业、财富管理公司、消费金融公司的激烈竞争。大数据金融将是其取得领先优势的重要武器,金融行业应该积极拥抱移动互联网,拥抱大数据,积极建设 DMP平台,持开放心态,同具有移动数据和技术的企业进行合作,利用已有的数据和外部数据,来取得2.0时代的先发优势。
大数据变现或者说大数据金融可以理解为,大数据金融=数据+平台+场景,其中数据包含金融企业自身数据和外部数据,平台包括移动App分析平台和DMP,场景需要同金融行业一起开发,包含O2O场景和跨界营销场景。
客户是有限的,市场是有限的,财富是有限的,时间是有限的,空间是有限的。在大数据2.0时代,金融企业应该及时行动,建设DMP平台,积极进行大数据变现,敢于试错,敢于利用大数据反馈进行自我优化,借助于移动互联网数据进行市场开拓。未来市场主要消费群体属于80后、90后,金融行业应该迅速了解客户行为和爱好,对已用商业模式和产品进行升级,金融行业越早进入大数据2.0时代,就会越早取得竞争的领先优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31