挖掘运维大数据,开拓运营新天地_数据分析师考试
在移动互联网快速演进的过程中,运营商市场呈现出三大特征:基础设施越发复杂,网络运维更加动态,业务需求更加个性。从2G到3G时代,通讯技术改变了消费者的生活方式,而进入到LTE和‘网络社会’时代,消费者的需求迫使运营商不断调整运营模式以适应未来的挑战,此时,传统的运维支撑系统,面临的主要挑战不再是规模,而是网络的多元化和用户更高的体验期望,运营商将如何实现运维的自身进化,适应新的生态系统?
运维烟囱加速倒下,数据蓝海提升共享
随着新技术和新业务的加快出现,运营商急于打破现有“烟囱”式构架的OSS系统,正逐步摆脱孤立的系统的束缚并消除专有应用,通过部署具有开放的接口、支持未来SDN、NFV等技术,这些颠覆性的技术带来广阔的想象空间,使得运营商具有全网视野,掌握跨网、跨层、跨域、跨技术和跨厂家等全局信息,但同时,SDN应用并不是一蹴而就,将与传统网络长期共存,逐步演进。因而OSS平滑演进将是一项长期的艰巨任务,这不仅面临技术挑战,还将面临体制、流程、文化和挑战,但我们应该更清楚地认识:这个过程将走向开放和共享的过程。将来,为故障处理提供更有效的支撑,OSS不仅需要提供综合性的报表,还应该具备基于业务级用户级的E2E实时多维视图和分析能力,通过导向式的查询挖掘视图帮助运维人员快递获取信息,保障用户体验,使运维数据真正成为运营商的核心竞争力。为实现运营商增收的夙愿,中兴通讯认为应从基础网络、用户感知和数据挖掘三个方面来入手。运维数据本身就是财富,一个个带着关键信息的bit,在运营商管道中流窜,稍纵即逝,这片数据蓝海中蕴藏着大量的宝藏等待我们去挖掘。
1.越发实用的智能分析
目前大部分OSS系统只显示故障不能显示原因,或提供单个子系统的解决建议,需要人工参与,层层排查。智能化OSS一方面可利用海量的数据仓库对信息、数据、资源、终端进行关联分析,包括触发智能终端进行数据收集或拨测,自动查找故障根节点,分析的深度已经超越传统意义上RCA,找到故障原因的范围可以达到80%~100%,还可以对问题分类统计,为运维人员和客户中心提供及时的分析数据,与配置管理和开通管理系统协同还能实现主动进行自我修复、优化配置,解决潜在的网络故障,保障基础设施的健康与质量。
2.更为准确的智能预测
智能预测是对历史数据做大量的统计学上的规律挖掘,通过大数据的machine learning技术从数据中梳理出具有规律性的事件模型,并用于未来事件发生与否的预判和防范。具体来说,对于某些体育赛事或者重大会展活动,我们可以利用所积累的历史网络指标、运维数据及掌握其他信息,如售票情况、天气、交通信息,对即将发生的此类活动做出可能的网络故障和业务质量的预测。并据此预测网络和业务的配置低于需求可能造成客户体验方面的风险。这种预测的能力如果和NFV以及SDN等技术相结合,能够进一步提高网络资源的动态分配和调度能力,使得HetNet网络面对业务和用户变化更加具有适应性。通过对预测值和实际值的分析,确定预测准确度,并以此做出预测算法及策略的调优,用以预测精度的持续改进。
3.海量数据带来的主动运维
通过数据深度挖掘,高价值小区提前被梳理出来,预测功能呈现未来一周业务量(如用户数、话务量、短信、数量流量等)等性能趋势,自动关注将未来预测超门限的小区,并依据既定的SLA,同时结合性能的未来趋势,预测出未来一周哪些小区的SLA受到动态影响而不达标,进一步临时调整这些小区运维的OLA的级别,以便优先安排这些高价值基站的运维,与电子流程系统协同可以实现自动巡检和派单。运维数据可以横向打通各个子网管理系统,甚至于业务监控中心,实现运维信息立体交换,让运维管理员获得充分的运维关联信息,从而对网络实施故障恢复或优化。
挖掘和共享是运维变革的源动力
传统的OSS系统在封闭的电信系统框架下经历了多次变革证明是不成功,SDN、NFV将机会真正带到了现实,共享的智能运营通过对网络和业务综合关联形成智能监控、智能预测以及智能保障,从而实现完整的智能运营体系,实现高效运营,提升运营收益,同时大数据技术成为智能运营各环节所需的核心技术。目前各大公司已经启动大数据价值挖掘的研究,其中,运维数据相关分析只是数据价值激活的冰山一角,更多的业务数据整合和动态关系建模将是运营商长期的工作重点,将现在运营商分散分布在BOSS系统、CRM系统、终端信息库、信令监测系统、OSS系统中的信息进行有效的整合和挖掘将是下一阶段最重要的方向。
竞争的加剧使得运营商必须不断提升服务水平,应对运维成本飙升等问题,数据挖掘与共享是大势所趋,从而能更有效支撑流程再造和资源共享,同时解决网络、技术和组织复杂性问题。
ROSE为下一代运维护航
中兴通讯的智能运维解决方案,将与自主研发的ROSE(Revolution Operation Support Environment)运维工具支撑平台实现数据共享、融合创新。
“纲举目张”,中兴通讯基于先进的运维模式,通过自研、与业界一流厂家联合开发的方式打造出全网络全业务运营支撑系统NetNumen? ROSE,涵盖了从网络规划、运营就绪、业务开通、运维管理的全程支撑,并根据运营商实际运营情况定制化综合解决方案,是更加易用、智能、开放的可视化运营支持系统。[保留可视化运营支撑系统]ROSE满足运营商基于业务服务为中心获得跨专业、端到端的卓越体验保障,降低了新技术新业务带来的维护难度,快速实现效率提升和运维集约转型。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22