大数据时代 企业数据安全面临四方面挑战_数据分析师考试
“互联网+”时代,企业大数据已经成为企业一个核心组成部分、成为企业的核心资产。越来越多的企业希望从数据获取更多的价值并且快速指导决策。企业数据呈现以客户导向,实时运行,数据驱动的趋势特征;数据类型越来越丰富多样化,包括海量的交易数据、人工合成数据、机器数据以及社交网络数据等;数据边界也从内部业务数据延伸到产业链的范畴。
大数据本身固有的特征可以用4个“V”来概括——Volume(数据体量巨大)、Variety(数据类型繁多)、Value(价值密度低)、Velocity(处理速度快)。大数据给企业带来价值的同时,也会引入新的安全威胁。从支付宝大规模故障,到携程网因“内错误操作”宕机近12小时,都表明大数据时代的安全问题日益凸显。随着企业数据安全事故频发,企业在大数据应用前首先要考虑数据安全威胁。
大数据给企业带来的安全威胁主要表现为以下几方面:
大数据的巨大体量使得企业信息安全管理成本显著增加
4个“V”中的第一个“V”(Volume),数据之大,这些巨大、海量数据的管理问题是对每一个企业大数据运营者的最大挑战:一方面,大量数据的集中存储增加了企业信息泄露风险;另一方面,大数据意蕴藏着更复杂、更敏感、价值巨大的数据,从而引来更多的潜在攻击者。
大数据的繁多类型使得信息有效性验证工作大大增加
4个“V”中的第二个“V”(Variety),数据类型多,数据来自于多维空间,各种非结构化的数据与结构化的数据混杂在一起。大量数据本身就蕴藏着价值,但是企业如何将有用的数据与没有价值的数据进行区分看起来是一个棘手的问题,甚至会引发越来越多的安全问题。
大数据的低密度价值分布使得安全防御边界有所扩展
4个“V”中的第三个“V”(Value),大数据单位数据的低价值。这种广种薄收似的价值量度,使得企业信息效能被摊薄了,大数据的安全预防与攻击事件的分析过程更加复杂,相当于安全管理范围被放大了。
大数据的快速处理要求使得独立决策的比例显著降低
“4个“V”中最后一个“V”(Velocity),决定了利用海量数据快速得出有用信息的属性。大数据分析日益成为一项重要的企业业务决策流程,随着越来越多的决策结果来自于大数据的分析建议,面对海量的数据收集、存储、管理、分析和共享,传统意义上的对错分析和奇偶较验已失去作用。
大数据时代已经到来,大数据已经产生出巨大影响力,并对我们的社会经济活动带来深刻影响。企业只有充分利用大数据技术来挖掘信息的巨大价值,才能形成强有力的竞争优势。面对大数据时代安全挑战,要予以足够重视,采取相应措施做到未雨绸缪。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22