京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据帮你洗脑:你是如何混淆因果关系的
这是一个人人都谈大数据的时代,不过数据真的是有益的吗?其实不一定,数据经常也会忽悠人。
请一句话评价下列事件(假设数据是真实的):
研究发现,越是成功人士,睡眠时间越短。
研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
研究发现,越富有的人越幸福。
研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
研究发现,去医院越多,越容易生病。
过去20多年跟踪研究发现,中国GDP越高,90后一代身高越高。
……
根据本人潜水博客论坛观察总结,大部分人的评价是这样的(至少前3个事件的评价是这样):
1,研究发现,越是成功人士,睡眠时间越短。
这么说,我要是不睡觉,是不是薪水就上亿了?
2,研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
看来还是女人对婚姻牺牲大啊!结婚导致女人收入变低,却增加了男人收入。
3,研究发现,越富有的人越幸福。
屌丝们洗洗睡吧,你幻想的穷开心是不现实的。
4,研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
我勒个去,都怪我小时候西兰花吃少了,大白菜吃多了!
5,研究发现,去医院越多,越容易生病。
唉,以后生病还是别去医院了。
6,过去20多年跟踪研究发现,中国GDP越高,90后一代身高越高。
哇!原来提高GDP还有这好处!不过,如果将来中国GDP下降,下一代怎么办?
等等,貌似这上面的逻辑有点问题吧?
实际上,上面的每一个推理都有严重的逻辑错误,都是错把相关关系当做了因果关系:
A越多,B越多,这是相关关系。
A越多,导致B越多,这是因果关系。
而如果没有进一步的调查和理论,相关关系是推理不出因果关系的。
为什么?
请看下面这个“脑筋急转弯”:
猜猜,下图的鸡和蛋是什么关系?
直觉:母鸡刚刚下了蛋。
第二直觉:还有可能是这个母鸡是由这个鸡蛋孵化出来的。
其实,它们有4种可能的关系:
同样,两个“A越多,B越多”这样的相关性实际上有4种可能(以收入和睡眠的为例):
A导致B:更少睡眠导致收入增加。
B导致A:收入增加导致睡眠减少。
A和B同时被C导致:随着年龄的增长,人对睡眠要求减少,因此睡眠少。同时年龄大的人,往往经验、人脉、知识更多,也自然收入更多。
A和B没有任何关系: 美国、西欧等经济发达,导致人们收入高;同时他们爱吃牛排,导致睡眠需求减少。(数据仅为举例,不代表真有这样的关系。)
所以,当你看到“睡眠越少,收入越多”这样的统计结果后,不要天真地认为只要你减少睡眠,你也能收入变高。
当然生活中的确有人是这么做的:
我认识一个人,看到了这样一个微博上流行的统计结果后,为了获得成功而刻意减少睡眠。
甚至,当他凌晨2点还在玩DOTA时,你过去问他:“你怎么还不睡?”他的回答是:“睡眠越少,将来越成功!为了赚大钱,我先从减少睡眠开始。而在这漆黑的夜里,只有DOTA能让我清醒。”
所以,假设“成功导致睡眠少”而不是“睡眠少导致成功”,你是无法通过减少睡眠而变得更加成功的。就像白种人喜欢吃牛排,但是你无法通过吃牛排变得更白。
除了“成功VS睡眠”之外,其实上面每个新闻都有类似的逻辑错误:
研究发现,女人结婚后变得更加贫穷,男人结婚后变得更加富有。
这个数据其实无法推测出结婚让女人变穷男人变富,还有可能是:预期自己将来没什么钱赚的女人更想赶紧把自己嫁出去,而预期将来能赚很多钱的男人倾向于赶紧找个老婆。
当然,还有可能是其他原因甚至是完全无关的因素造成了这个相关关系。
研究发现,越富有的人越幸福。
通过这个数据并不能推测出你赚钱后就能变得更加富有。
实际上研究证明,当金钱超过个人基本需求之后(比如已经吃饱穿暖),对长期幸福感没有显著影响。
比如中了巨额彩票的人得到的幸福感只是短期的(类似吸毒产生的幸福感),调查发现,中彩票后6个月,即使你变得比之前富有上百倍,但是你的幸福感指数还是维持在6个月前水平。
(此研究详细请看哈佛大学公开课《幸福课》,by Tal-Ben Sharhar)
那么为什么我们发现富有的人往往很幸福呢?
其实这是因为富有和长期幸福都由类似的因素导致:自信、热忱、勤奋等。所以,你的自信、热忱、勤奋等情商特征有2个产物:
能够提升你长期幸福感,让你觉得生活更加有意义
能够让你赚钱升职。但这不代表赚钱本身可以提高长期幸福感。
所以,“穷开心”还是存在的。
研究发现,儿童时期吃西兰花越多,成年后往往职业收入越多。
这个新闻是我YY的,但是这句话绝对的正确的!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06