中国大数据六大技术变迁记_数据分析师考试
集“Hadoop中国云计算大会”与“CSDN大数据技术大会”精华之大成, 历届的中国大数据技术大会(BDTC) 已发展成为国内事实上的行业顶尖技术盛会。从2008年的60人Hadoop沙龙到当下的数千人技术盛宴,作为业内极具实战价值的专业交流平台,每一届的中国大数据技术大会都忠实地描绘了大数据领域内的技术热点,沉淀了行业实战经验,见证了整个大数据生态圈技术的发展与演变。
2014年12月12-14日,由中国计算机学会(CCF)主办,CCF大数据专家委员会协办,中科院计算所与CSDN共同承办的 2014中国大数据技术大会(Big Data Technology Conference 2014,BDTC 2014) 将在北京新云南皇冠假日酒店拉开帷幕。大会为期三天,以推进行业应用中的大数据技术发展为主旨,拟设立“大数据基础设施”、“大数据生态系统”、“大数据技术”、“大数据应用”、“大数据互联网金融技术”、“智能信息处理”等多场主题论坛与行业峰会。由中国计算机学会主办,CCF大数据专家委员会承办,南京大学与复旦大学协办的“2014年第二届CCF大数据学术会议”也将同时召开,并与技术大会共享主题报告。
本次大会将邀请近100位国外大数据技术领域顶尖专家与一线实践者,深入讨论Hadoop、YARN、Spark、Tez、 HBase、Kafka、OceanBase等开源软件的最新进展,NoSQL/NewSQL、内存计算、流计算和图计算技术的发展趋势,OpenStack生态系统对于大数据计算需求的思考,以及大数据下的可视化、机器学习/深度学习、商业智能、数据分析等的最新业界应用,分享实际生产系统中的技术特色和实践经验。
大会召开前期,特别梳理了历届大会亮点以记录中国大数据技术领域发展历程,并立足当下生态圈现状对即将召开的BDTC 2014进行展望:
追本溯源,悉大数据六大技术变迁
伴随着大数据技术大会的发展,我们亲历了中国大数据技术与应用时代的到来,也见证了整个大数据生态圈技术的发展与衍变:
1. 计算资源的分布化——从网格计算到云计算。 回顾历届BDTC大会,我们不难发现,自2009年,资源的组织和调度方式已逐渐从跨域分布的网格计算向本地分布的云计算转变。而时至今日,云计算已成为大数据资源保障的不二平台。
2. 数据存储变更——HDFS、NoSQL应运而生。 随着数据格式越来越多样化,传统关系型存储已然无法满足新时代的应用程序需求,HDFS、NoSQL等新技术应运而生,并成为当下许多大型应用架构不可或缺的一环,也带动了定制计算机/服务器的发展,同时也成为大数据生态圈中最热门的技术之一。
3. 计算模式改变——Hadoop计算框成主流。 为了更好和更廉价地支撑其搜索服务,Google创建了Map/Reduce和GFS。而在Google论文的启发下,原雅虎工程师Doug Cutting开创了与高性能计算模式迥异的,计算向数据靠拢的Hadoop软件生态系统。Hadoop天生高贵,时至今日已成为Apache基金会最“Hot”的开源项目,更被公认为大数据处理的事实标准。Hadoop以低廉的成本在分布式环境下提供了海量数据的处理能力。因此,Hadoop技术研讨与实践分享也一直是历届中国大数据技术大会最亮眼的特色之一。
4. 流计算技术引入——满足应用的低延迟数据处理需求。 随着业务需求扩展,大数据逐渐走出离线批处理的范畴,Storm、Kafka等将实时性、扩展性、容错性和灵活性发挥得淋漓尽致的流处理框架,使得旧有消息中间件技术得以重生。成为历届BDTC上一道亮丽的风景线。
5. 内存计算初露端倪——新贵Spark敢与老将叫板。 Spark发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,从多迭代批量处理出发,兼容并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。在短短4年,Spark已发展为Apache软件基金会的顶级项目,拥有30个Committers,其用户更包括IBM、Amazon、Yahoo!、Sohu、百度、阿里、腾讯等多家知名公司,还包括了Spark SQL、Spark Streaming、MLlib、GraphX等多个相关项目。毫无疑问,Spark已站稳脚跟。
6. 关系数据库技术进化—NewSQL改写数据库历史。 关系数据库系统的研发并没有停下脚步,在横向扩展、高可用和高性能方面也在不断进步。实际应用对面向联机分析处理(OLAP)的MPP(Massively Parallel Processing)数据库的需求最迫切,包括MPP数据库学习和采用大数据领域的新技术,如多副本技术、列存储技术等。而面向联机事务处理(OLTP)的数据库则向着高性能演进,其目标是高吞吐率、低延迟,技术发展趋势包括全内存化、无锁化等。
立足扬帆,看2014大数据生态圈发展
时光荏苒,转眼间第2014中国大数据技术大会将如期举行。在技术日新月异的当下,2014年的BDTC上又可以洞察些什么?这里我们不妨着眼当下技术发展趋势:
1. MapReduce已成颓势,YARN/Tez是否可以再创辉煌? 对于Hadoop来说,2014是欢欣鼓舞的一年——EMC、Microsoft、Intel、Teradata、Cisco等众多巨头都加大了Hadoop方面的投入。然而对于众多机构来说,这一年却并不轻松:基于MapReduce的实时性短板以及机构对更通用大数据处理平台的需求,Hadoop 2.0转型已势在必行。那么,在转型中,机构究竟会遭遇什么样的挑战?各个机构如何才能更好地利用YARN所带来的新特性?Hadoop未来的发展又会有什么重大变化?为此,BDTC 2014特邀请了Apache Hadoop committer,Apache Hadoop Project Management Committee(PMC)成员Uma Maheswara Rao G,Apache Hadoop committer Yi Liu,Bikas Saha(PMC member of the Apache Hadoop and Tez)等国际顶尖Hadoop专家,我们不妨当面探讨。
2. 时过境迁,Storm、Kafka等流计算框架前途未卜。 如果说MapReduce的缓慢给众多流计算框架带来了可乘之机,那么当Hadoop生态圈组件越发成熟,Spark更加易用,迎接这些流计算框架的又是什么?这里我们不妨根据BDTC 2014近百场的实践分享进行一个侧面的了解,亦或是与专家们当面交流。
3. Spark,是颠覆还是补充? 与Hadoop生态圈的兼容,让Spark的发展日新月异。然而根据近日Sort Benchmark公布的排序结果,在海量(100TB)离线数据排序上,对比上届冠军Hadoop,Spark以不到十分之一的机器,只使用三分之一的时间就完成了同样数据量的排序。毫无疑问,当下Spark已不止步于实时计算,目标直指通用大数据处理平台,而终止Shark,开启Spark SQL或许已经初见端倪。那么,当Spark愈加成熟,更加原生的支持离线计算后,开源大数据标准处理平台这个荣誉又将花落谁家?这里我们一起期待。
4. 基础设施层,用什么来提升我们的网络? 时至今日,网络已成为众多大数据处理平台的攻坚对象。比如,为了克服网络瓶颈,Spark使用新的基于Netty的网络模块取代了原有的NIO网络模块,从而提高了对网络带宽的利用。那么,在基础设施层我们又该如何克服网络这个瓶颈?直接使用更高效的网络设备,比如Infiniband能够带来多少性能提升?建立一个更智能网络,通过计算的每个阶段,自适应来调整拆分/合并阶段中的数据传输要求,不仅提高了速度,也提高了利用率。在BDTC 2014上,我们可以从Infiniband/RDMA技术及应用演讲,以及数场SDN实战上吸取宝贵的经验。
5. 数据挖掘的灵魂——机器学习。 近年来,机器学习领域的人才抢夺已进入白热化,类似Google、IBM、微软、百度、阿里、腾讯对机器学习领域的投入也是愈来愈高,囊括了芯片设计、系统结构(异构计算)、软件系统、模型算法和深度应用各个方面。大数据标志一个新时代的到来,PB数据让人们坐拥金山,然而缺少了智能算法,机器学习这个灵魂,价值的提取无疑变得镜花水月。而在本届会议上,我们同样为大家准备了数场机器学习相关分享,静候诸位参与。
而在技术分享之外,2014年第二届CCF大数据学术会议也将同时召开,并与技术大会共享主题报告。届时,我们同样可以斩获许多来自学术领域的最新科研成果。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16