京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据推动汽车产业转型升级_数据分析师考试
随着经济发展进入新常态,工业发展环境发生深刻变化,工业发展方式及政策导向也将随之转变。国务院总理李克强在2015年政府工作报告中明确提出“中国制造2025”的概念,他指出:“要实施‘中国制造2025’,加快从制造大国转向制造强国。促进工业化和信息化深度融合,开发利用网络化、数字化、智能化等技术,着力在一些关键领域抢占先机、取得突破。”利用互联网、大数据等新兴科技推动传统制造业转型升级,将成为传统制造业发展的新方向。
汽车产业是国民经济支柱产业,是国家大力支持的战略必争产业中竞争最充分、最具活力、最具规模的产业,其利用互联网、大数据等新兴科技的广度和深度,走在了国家大力支持的装备制造业的最前沿,对其他装备制造业有明显的示范作用,必将受到各级政府的重视。
汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,经济效益初现,发展前景光明。目前对大数据的利用包括,用户洞察、业务运营监控、精细化营销和运营、交通领域、汽车流通等方面。在用户洞察层面,大数据用来洞察消费者对产品的关注点和走势,实时掌握消费者需求及动向,深度掌握消费者潜在需求及预期,帮助产品经理、营销人员进行相关研究和决策。在业务运营监控层面,大数据能帮助企业监控业务运营情况,快速发现问题并定位问题的原因。企业通过搭建业务运营的关键数据体系,在此基础上开发可视化的数据产品,监控关键数据的异动,并可以定位数据异动的原因,辅助运营决策。在精细化营销和运营层面,通过大数据驱动企业进行精细化运营和营销,包括构建基于用户的数据提取和运营工具、基于大数据的CRM系统、基于大数据的营销活动数据挖掘体系、推广渠道质量监控、通过数据挖掘手段进行客户生命周期管理、客户个性化推荐等。此外,在交通领域及汽车流通领域,大数据也有初步探索。可见,许多基于大数据的创新与融合正在悄然改变着行业的发展态势。
中国汽车技术研究中心作为行业技术归口单位和国家政府主管部门的技术支撑机构,始终将更好的协助政府和服务行业作为自己的发展使命,在促进新技术发展的同时,积极搭建汽车行业核心数据平台,并应用于行业标准与技术法规制定和行业规划与政策研究等方面,特别在提供行业统计分析数据、消费者研究、行业信息化服务、汽车后市场研究、车辆应用数据与技术改进等方面形成了较强的研究实力。
为了及时总结行业内领先企业和机构利用互联网、大数据的新鲜经验,展示大数据推动汽车产业转型升级的最新成果,2015年4月9-10日,中国汽车技术研究中心将在天津空港经济区举办“2015中国汽车产业数据研究峰会”,峰会以“大数据推动汽车产业发展”为永久主题, 本届主题为“大数据推动产业融合”。届时将有国内外政府机构、科研单位和相关企业的数百位嘉宾出席,将针对汽车产业源头数据处理、不同维度的汽车产业数据应用和大数据与汽车产业融合等问题做广泛讨论。
此次峰会顺应大数据时代潮流,定位于跨行业、多角度的数据交流峰会,峰会旨在通过跨界的思路,务实的态度,前瞻性的探讨,为汽车行业的数据交流与利用搭建一座持久的交流平台,指导和促进中国汽车产业的可持续发展。与行业主管部门、专业研究机构、汽车及零部件企业、互联网企业等共同探讨大数据与汽车产业融合发展的前沿成果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01