京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“辛普森悖论”(Simpson’s paradox)指的是在人们尝试探究两种变量是否具有相关性的研究中,在某些前提下有时会产生的一种现象。也就是说,该理论认为在分组比较中都占优势的一方,会在总评中反而是失势的一方。辛普森悖论主要是由于一些所谓“复杂变量”的影响,其弊端是没有对各个元素进行细化分析。
比如说,如果一个移动应用的用户组成是1万人用Android设备、5000人使用iOS设备,那么整体的付费转化率应该是5%,其中iOS设备的转化率为4%,而Android设备则是5.5%。如果在同等货币化效率的前提下,(也就是说Android用户和iOS用户消费一样多),一个资源渠道有限的产品经理就可能会根据这个数据做出很夸张的决定,或许会有限选择Android平台研发,甚至会取消iOS研发。
然而,当把这个数据分开来看,就会出现不同的结果:
我们都知道iOS平板的付费转化率比Android平板高出很多,而且iOS智能机的转化率也相对更好。了解了这些,产品经理或许会对未来的产品决策进行重新衡量。这种情况下,设备类型就是复杂变量:如果数据是根据设备类型得到,那么其他的数据就可能被完全忽略。在具体设备方面,iOS的付费转化率可以完全击败Android,但在整体上却低于Android的主要原因是,两个平台的设备类型表现不同:平板的转化率高于智能机,总体上来讲,iOS设备的转化率低于Android总体设备的转化率,尽管Android平板的转化率更低。
iOS和Android整体付费转化率(上)和具体设备转换率(下)比较的结果差异
造成这样差别的原因如下:http://cda.pinggu.org/
用户量:免费产品需要很大的用户量才能获得足够的总收入,因为该模式的转化率极低。而这些用户通常来自全球各个地区,使用各种不同类型的设备。针对不同的设备类型采用通用的平均值是没有意义的。
LTV范围:免费产品需要很长的货币化周期,把用户消费当作玩家是否开心的依据,就像参与度和消费紧密相关一样,因此可以作为分类的标准。
大多数的用户是不会付费的。免费产品的综合付费转化率比较低是因为把付费玩家和非付费玩家综合到了一起,所以任何对免费用户的衡量都是非常低的。因为大多数的用户是不付费的,所以ARPU以及ARPPU相差很多。
避免辛普森悖论的关键是要对反映两种不同用户之间的事实进行参考。用户划分在数据分析中是非常重要的,尤其是在免费产品当中,平均用户不仅不存在,而且是误导研发的因素之一。在一个具体的产品中,普世型的数据是没有多大参考意义的。
但用户分类并不只是在考虑产品研发路线的时候重要,如果一个游戏功能优先考虑最有价值和参与度最高当用户,因此这样的结论不仅是错误的,还会带来很多错误的用户。因此在产品做决策的时候需要考虑以下几点:定位(国家和地区);设备(平台、设备类型);获取渠道;用户早期行为(比如货币化或者参与度数据);进入游戏时间(控制季节性因素)。对于一些获取渠道来说,比如Facebook,其他数据也可以进行参考,比如年龄、性别等等。
和简单的把iOS与Android的比较数据相比,参考了这些因素的数据分析更加可靠。根本上来说,数据分析是为了提高用户使用的产品,如果分析采取的数据是错误的,那么真正的用户群是不会买账的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11