抗衡互联网冲击,购物中心要玩转大数据_数据分析师考试
大数据、云计算、互联网……这些虚拟空间的名词正在跟实体产业融合,互联网与传统行业之间的界限越来越模糊,飞凡、喵街、大众点评加上不计其数的O2O产品让实体商业变得越来越好玩,人们在虚虚实实之间享受着“互联网+”带来的方便、经济和愉悦感。
与此同时,还有一大批实体商业正在忙碌地编织着适合自己的互联网。大型的购物中心开始铺设免费Wi-Fi、导入Beacon微定位技术、建设在线商城、开展朋友圈营销……不亦乐乎地为迈进“互联网+”新时代准备着。
智慧商业,过去只存在于人们唠嗑吹牛皮里的生活场景,真的实现了。
智慧来源于数据
购物中心作为人们娱乐、休闲的场所,为什么不长“情”商,长“智”商?其实目的很简单,智慧能够帮助购物中心降低经营成本、提高销量。
问题一:智慧从哪获取?
人类智慧的来源主要是从书本,以及在社会经历中获取信息,经过大脑处理分析、总结而来,互联网智慧也是同样道理,它用“0和1”将人类的行为转化成数据,进行分类处理,再由人进行分析、形成具象的画面,帮助人类营造充满想象力的生活,换句话说,智慧商业需要大数据才能体现价值。
问题二:智慧怎么帮助购物中心达到目的?
没有大数据之前,购物中心在分析消费者习惯、商户需求、制定活动促销策略时,要么凭借多年经验、要么费时费钱的做现场调研,按照一个相对武断的结果,对购物中心发展进行指导。这其中产生的试错成本、人力成本和时间成本是不可估量的。
如果有了大数据,购物中心提高“智商”之后,这些成本可以降到最低。
举个例子,以玩转大数据出名的美国百货公司梅西百货,会根据消费者的购物路线、每个店的停留时间描绘出个体的重点购物区域,对他们进行个体区分,为企业在展台布置、展品摆放等方面提供很多信息,从而帮助企业有针对性的开展促销来提升其销量。
此外,梅西APP的智能试衣间、在线支付、图像搜索等依托大数据建设的智能购物体验也帮助它俘获了不少消费者的心,于是,在国内百货业跌入冰点发展的时期,梅西百货的净利润增长还能保持在20%以上。
也就是说,已经被互联网改变生活方式的消费者,需要“智”取。
梅西百货的大数据运营模式,如今在中国的购物中心身上一样可以实现,而且会很快。飞凡、喵街等购物中心电商开放平台的推出,能够更好地帮助购物中心以轻姿态构建大数据。
以飞凡电商开放平台为例,它目前的大数据处理能力可以帮助购物中心实现数据可视化,提供分析报表、消费者画像等,进而指导购物中心针对不同群体发起实时的新品和优惠推送。
同时,飞凡大数据还能帮助购物中心针对不同商户进行客流、销售和物业管理等方面的分析,有效调整招商策略、定价策略、活动策略和服务策略等,通过数据采集处理、数据挖掘分析等个性化解决方案,构建智慧商业生态。
智慧要懂得开放
不过,在购物中心是否要和外部平台合作,共同打造智慧商业生态的问题上,业内也有不同的声音。有人认为,如果购物中心将数据开放,很有可能被电商“绑架”,失去线下优势,所以,一些规模实力强劲的购物中心为了避免与电商合作,沦为仓库和配送站的风险,倾向于自己建设封闭性的平台。
购物中心的这种做法无可厚非,但自建平台需要投入大量的资金、人员、设备等硬性成本,它跟建造一个APP、开通一个微信账号的概念不一样,智慧商业是一个生态系统,相当于购物中心要重新建造一个相同量级的互联网电商。
但罗马不是一天建成的。
在快速迭代的互联网环境下,市场和竞争者不会给你太多时间去闭门造车,所以,购物中心嫁接外围资源建设互联网系统,是能够较快融入“互联网+”,推进智慧商业的最好办法。更有利的是,与电商合作后,购物中心还可以共享电商平台的互联网资源,例如庞大的会员数量、强大的互联网技术。
飞凡拥有腾讯、百度和万达的庞大资源,还有完善的会员管理体系和积分联盟,未来都可以共享给合作的购物中心。
这些资源上的“福利”,解决了购物中心客源不足、提袋率不高、会员不活跃的问题,也是盘活购物中心大数据系统的重要手段。
互联网是一个以开放、共享为特征的信息化革命的全新时代,因此,带上互联网思维与飞凡等开放平台进行大数据合作,是购物中心智慧商业转型的明智选择。更重要的是,飞凡是基于万达实体商业运营经验,从线下长起来的,它不做单纯的电商,而是作为线下购物的“智慧工具”,以用户而非客户的角度,为购物中心提供大数据支持,更懂得实体商业需要什么。
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28