大数据时代下工作的几点建议_数据分析师考试
近年来,伴随“物联网”、“云计算”和“大数据”等词汇进入公众视野,一个大数据时代正大踏步向我们走来。在这一背景下,我们应如何创新社会管理方式、做好群众工作,是我们面临的重大课题。
大数据时代给群众工作带来的影响
所谓“大数据”,是指所涉及的信息量规模巨大到无法通过目前主流软件在合理时间内达到撷取、管理、处理、并整理成为帮助企业和其他组织决策更积极目的的资讯。其具有四个特点(即4V):“巨量”(Volume)、“高速”(Velocity)、“多样”(Variety)、“价值”(Value)。运用大数据,会增加工作量和工作难度,也能让群众工作更加快捷、精准。这主要表现在:一是便于管理部门“摸清家底”;二是有利于优化流程、提高效率;三是让民众享受更加高效、公正、透明的服务;四是可以提前感知和预测事件苗头及发展走势。可以说,大数据为群众工作提供了强大技术手段,它将在很大程度上改变群众工作和社会管理思路:从“模糊管理”向“数据管理”转变,由“经验治理”向“科学治理”迈进,实现“智能社会”、“智慧城市”。
大数据时代群众工作面临的主要问题
数据意识薄弱。一些管理者数据意识比较淡薄,缺乏“用数据决策、凭数据施政”理念。
数据政出多门。由于缺乏统筹规划,不少应用系统之间没有统一的技术和数据标准,数据不能自动传递,缺乏有效的关联和共享,从而形成“数据孤岛”。
数据安全欠缺。利用云计算对海量数据资源进行整合,使其从分散变得集中,增加了数据存储的安全风险。 数据人才匮乏。大数据是一个综合性课题,需要不同层级的人才,当前在党政机关比较匮乏。
做好大数据时代群众工作的几点建议
在“教育”上下功夫,培养数据意识和数据素养,为大数据时代的群众工作提供坚实思想保障。随着信息技术的飞速发展,具备良好数据意识和数据素养,将成为党政干部做好大数据时代群众工作的关键。首先,要把大数据专业知识列入各级党政干部教育培训和年度考核;其次,举办各类讲座和学术报告,普及大数据知识;第三,利用报刊、广播、电视和网络等媒体开辟专栏,宣传相关知识。
在“整合”上下功夫,实现数据互联互通和充分共享,为大数据时代的群众工作提供一流技术平台。应对大数据时代群众工作的需要,消除信息孤岛,实现数据的互联互通和充分共享,建设统一技术平台,显得格外迫切。一要坚持统一领导、统一规划、统一标准、统一建设;二要遵循以“需求为导向,应用促发展”的工作思路,推进信息共享、互联、互通平台建设与应用同步建设;三要采用国际先进的,符合我国信息化建设发展方向的、标准的、跨平台的信息技术。
在“防范”上下功夫,保护数据安全和公民隐私,为大数据时代的群众工作提供可靠网络环境。我们在实施社会管理、做好群众工作时,要特别注重对数据安全和公民个人隐私的保护。第一,将个人信息保护纳入国家战略资源的保护和规划范畴,保护公民隐私;第二,加快个人隐私保护立法,加大对侵害隐私等行为的打击力度;第三,加强对隐私保护行政监管,建立保护隐私测评机制;第四,加强对隐私权的技术保护,利用技术手段来保障公民隐私安全和合法权益。
在“创新”上下功夫,加强人才队伍建设,为大数据时代的群众工作提供优质智力支撑。没有一流的人才队伍,迎接大数据时代、做好大数据时代群众工作将成为一句空话。因此,开发和培养一支大数据人才队伍,不断提高群众工作的能力势在必行。一要设立专门的数据管理岗位,建立政府“首席信息官”制度;二要委托高校、科研院所和国际知名企业,“订单式”培养人才;三是利用“聘任制”,不断吸引体制外的专业人才进入党政机关,为大数据时代的群众工作提供智力支持和人才保障。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22