大数据的价值如何体现_数据分析师考试
进入大数据时代,运营商应用大数据发展的驱动因素是什么,是否需要建立新型数据库? 刘伟光: 随着通信行业的竞争日益激烈,传统的语音和短信等主营收入的利润不断下滑,导致运营商必须找到新的利润增长点,同时有效控制运营成本,从而使自身可以在激烈竞争中立于不败之地。这也是为什么运营商把实现精准化营销和精细化运营提升到战略层次的重要原因。
此外,传统数据库技术已无法满足运营商对大数据充分利用的需求。新型数据库应该具备如下特点:首先应该采用支持大规模并行处理的分布式架构;其次,应该使用基于符合工业标准的开放硬件和系统平台,保证成本可控;第三,随着开源技术不断成熟,创新速度快,新型数据库平台应该易于与新的开源技术进行融合;第四,新的数据库平台应该可以实现与Hadoop平台的无缝集成,实现跨结构化、半结构化、非结构化海量数据的混合分析能力。 卢东明: 运营商目前试图做新型数据库,但是不太现实,首先数据库公司一直以来都是很稳定的几家,需要长期积淀。
其次,大数据不是取代以前的技术,而是混合补充使用,不是新型数据库出来后,就完全替代传统数据库从而大规模使用。数据库是核心、稳定的技术,大数据是开源的软件技术,运营商还是会选择使用相对成熟的软件。 《通信世界周刊》: 大数据今年以来得到格外关注,目前发展状况如何? 卢东明: 大数据在运营商的业务中早就有应用,目前在各个省都得到普遍应用了。大数据这个词目前有些炒作成分,它和以前的数据库不是完全脱节的,是对数据库的延伸。大数据是个现象,是数据库的另一个形态,不是否定、颠覆之前的数据库形态。
目前做大数据的厂商依然是以前那几家数据厂商,不同的产品解决不同的问题。在中国电信行业,从数据量和应用角度来看处于世界领先地位,这是由于电信用户多、规模大,电信业遇到的问题和挑战比较大,解决方案难度高。 刘伟光: 目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求推出了很多新的大数据实时分析的项目,相信未来的两到三年这个市场将会成倍增长,甚至会到达我们今天不能预期的数量。 需要分析共享大数据的管理工具 《通信世界周刊》: IT企业如何依托大数据为运营商提供管理工具,提升运营效率? 刘伟光: 实现各部门的紧密协作永远都是提升运营效率的不二法门。而IT企业应该为运营商提供实现紧密协作、分析、共享大数据的管理工具,来达成提升运营效率的目标。
此外,大数据时代,IT企业仅仅为运营商提供分析平台、分析工具是不够的。这是因为运营商虽然很了解业务和需求,但普遍缺乏数学建模能力,因此很难利用好这些平台,使其发挥最大效益。所以,如何利用这些平台、系统和数据实现科学建模,同样是提升运营效率的关键所在。 武新: 运营商要解决数据处理效率问题,现在的数据用以前的系统处理需要一天一夜,而应用大数据技术处理可以一个小时完成。在大数据平台,应用云技术,通过集群的方式,几十台服务器同时工作,并进行压缩数据来节省空间。
目前大数据主要是针对结构化数据的应用,用户上哪个网,停留多长时间,通过分析都可做相应的分析结果推送给相关部门。除了对用户上网行为分析,还有网络使用情况、网络设备情况和用户使用手机类型分析。而对非结构化的数据,如视频和图片,目前分析得还较少。 《通信世界周刊》: 大数据具体应用于运营商的哪些业务中,有哪些成功的应用和案例? 卢东明: 大数据主要应用在运营商的“信令”系统分析上,由于其数据量非常大,比“话单”分析的挑战大很多。移动互联网发展起来之后,运营商开始关注大数据,进行“用户行为分析”,根据人群分析做精准营销,推荐流量套餐。
此外,运营商提供IDC服务,通过“云”中心的方式为互联网企业提供服务。 武新: 运营商从最近两三年开始,感受到这方面的压力,开始寻求解决方案。中国移动“信令”分析系统项目对海量数据进行分析和挖掘;中国联通对“话单”数据进行用户行为分析。中国电信“新一代数据库”产品正在测试中,通过精分系统,进行精准营销。此外,在运营商专网也已应用大数据。运营商目前仍处于测试探索中,通过几种方法针对不同的应用进行测试、筛选。
目前运营商的相关项目有“流量分析”、“智能管道”和“新一代数据库”产品等,传统的数据库面对海量数据已经无法支撑,将来会慢慢被大数据代替掉。 要有开放的心态 《通信世界周刊》: 发展大数据需要解决哪些问题,关键点是什么? 卢东明: 由于数据分析要看存储效果,涉及到效率和速度。目前运营商应用大数据存在的问题是避免无限制的花钱。另一方面,运营商要和厂商合作,针对不同的业务类型和应用场景,采取不同的分析方法。此外,运营商要有开放的心态,因为大数据作为开源的软件也不是可以解决所有的问题的。 武新: 在数据处理上,运营商转型中不仅有技术上的问题,还需要经历一个时间阶段和过程。
此外,运营商要转变思维方式,其在数据分析上的经验不如互联网企业,这是方法论问题,关系到如何用数据做生意。运营商以前都是依托传统业务,海量数据的出现,使得行业即将洗牌,运营商不得不转型重视数据挖掘。 但运营商可以发挥自己的优势,首先,要分析用户行为的变化,由分析以前的语音用户转变为分析上网行为。其次,运营商有能力提供类似互联网公司的服务,如QQ聊天。
最后,运营商有专网资源,有自己的数据中心可以运维,但是目前这些优势还没有完全发挥出来,是因为还没把握透用户的需求。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22