汽车也在玩大数据但毕竟不是电商_数据分析师考试
北京的付先生最近开始研究汽车,为购买自己人生中第一台座驾做准备。细心的他发现,在看了若干汽车网站之后,即便是在与汽车无关的页面上,他也看到了比过去更多的同汽车相关的广告。
这并不是巧合,而是他电脑中的Cookies记录了付先生对车的兴趣。这类被昵称为“小甜饼”的文件是用户上网时,网站服务器留在用户电脑中的文本文件。它们很多只有1KB大小,却存储了用户的诸多信息。
大数据改造汽车业态
“地理位置、访问来源、访问时间以及APP的详细信息等,它都可以记录出来。”这些用户本身都意识不到的“互联网足迹”,正在帮助广告业者进行数据分析,更有针对性的捕捉潜在消费者、投放广告。“汽车营销正在步入大数据时代。”吉利汽车数字营销部互联网营销科科长徐见达对《商业周刊/中文版》说。
大数据成为热门趋势,越来越多的品牌厂商和广告营销机构都在发力以大数据为基础的网络营销模式,这些变化也在不断地向传统的汽车营销领域发起进攻。“之前,我们做广告营销凭主观想法多一些,而现在,大多数的营销工作都会围绕数据来做。”徐见达说。2010年,吉利成为第一个在淘宝上开店卖车的汽车企业。开业不到一分钟,吉利准备的第一批300辆车就被拍光。
大数据首先改变的是市场调研方式。通过观察Cookie等方式,广告从业者可以了解到更为客观的情况。“之前的汽车市场调研抽样的样本有限,而且在问题设计和角度选取的过程中,人为因素总是或多或少地介入,这就可能会影响到市场调研的客观性。”电众数码研发中心数字媒体与电商营销咨询总监胡丹丹说。大数据分析不只会分析互联网行为,也会关注人生活的更多纬度。艾瑞咨询集团高级分析师由天宇说,“数据可以更加丰富,比如了解到消费者的消费习惯和周期,兴趣爱好,对人的理解会更加深刻。”
同时被改变的,还有互联网广告经济。现在精确广告投放和推送技术可以帮助汽车厂商进行“针对个人需求的沟通”。当用户访问某个页面之后,数据管理平台可以测算出这个人是否对某一类型的汽车感兴趣。而愿意将广告推送给这类用户的汽车广告主开始竞价,胜出者就可以将自己的广告推送到对方屏幕上。
搜狐汽车事业部数据经理柳鹏对《商业周刊/中文版》说,一些汽车公司已经开始这样的尝试,这样做的点击率可以是传统方法的2到3倍。奔驰为了推广其C系轿车,曾经对特定人群进行定向投放,结果实现了比传统投放方式3倍以上的目标人群覆盖。
徐见达透露,吉利的广告策略已经更加灵活。“最早我们在网站上投广告只能是按照时间付费,一个广告位一天多少钱。”而现在,吉利则可以在需要的时候按照人群的“标签”进行定向投放。比如,推广熊猫这样偏时尚的车型,锁定20到30岁、喜欢时尚的人进行投放。推广SUV车型时,面向关注军事、政治、旅行、体育等领域的用户。“数据帮助我们挑选了正确的消费者,使营销有的放矢。”徐见达说。
大数据时代能够很好地量化消费者的决策过程,分析消费者的生活习惯和方式,“有多少人在浏览经销商网站,不同的车关注的消费者有哪些区别?”数据会给你答案。“它可以帮助汽车企业在适当的时机,以适当的方式,把适当的信息传递给适当的目标客户,并获得预期的效果。”咨询公司缔元信总裁梅涛说。
大众、福特、比亚迪等汽车厂商都在追踪网民的在线浏览轨迹。比亚迪汽车销售有限公司总经理侯雁说,比亚迪已经开始和一些IT公司合作,利用线上和线下的管理系统对客户的信息做统计和分析,同时还专门成立了一个数据化营销部门。目前,以数据追踪分析为导向的广告营销占据了各大汽车制造商广告营销的大额支出,但具体数额汽车厂商不便透露。
未解的难题
大数据为几乎所有行业——当然也包括汽车——的营销工作描绘了一个美好的未来。但是,通往美好未来的道路却并不平坦。“汽车网站或者汽车媒体本身不是电商,他们不掌握帐号。”柳鹏说,“所以,他们甚至不知道这个访客是男是女,只能根据用户的访问行为去猜。”
目前汽车产业掌握的数据量有限,这影响了汽车企业的精准广告投放。各个数据拥有者也处在各自为战的状态,并不愿意分享自己数据。“这让很多数据方面的应用还停留在之前的层面。”由天宇说,“只有数据所有者基于某种商业模式开放自己的数据,大数据应用才会有一个飞跃。”
“最困难的可能是对用户的行为和动机的反推、还原。”胡丹丹则表示,大数据挖掘不仅需要好的工程师,也需要心理学、社会学等方面人才的参与,产品设计者和开发者需要具有跨界的知识结构,才能更好的理解和运用数据,“数据分析和挖掘不仅仅是数据的统计,更需要进行人性和心理的洞察,这是最难的。”
还不要忘了大数据营销所基于的大数据来自哪里——普通消费者。如果个人数据被过度商业利用,就会形成隐私侵犯。“目前,隐私保护还是一个灰色地带。”北京大学新闻传播学院副院长、广告学系主任陈刚说,“大家实际上也有反思。未来需要建立一个最基本的行业规则,就是保护用户的隐私,不要让用户受到骚扰。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 8-1 Pandas 数据重塑 - 数据变形 数据重塑(Reshaping) 数据重塑,顾名思义就是给数据做各种变 ...
2024-11-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22