大数据为信息安全赋予新的逻辑思维_数据分析师考试
信息工业技术的发展,催生了梦想的诞生与实现。一直以来,人类都希望机器能够具有人类智慧高效地完成工作,而这样的愿望,今天已经延伸至信息安全。 什么叫具有人类逻辑的信息安全?某位员工已经出差到外地,其账号却在公司办公室中登录内网访问重要资料,作为一名网络管理人员,当你知道这一切的时候首先会想到:这名员工的账号被盗了,公司的商业机密正在被窃取。之所以得出这样的结论,是由于按照正常的逻辑判断,将“出差”与“本地访问IP地址”联系在一起,在情理上是矛盾的。我们希望,机器也能够如同人类一般进行“逻辑思维”。结合大数据技术,今天这种智慧型的解决方案已经成为下一代信息技术的发展趋势。
大数据,信息安全分水岭
大数据技术在今天已经成型并已经运用多年。在国外,不仅思科和IBM这样的传统巨头在进行相关研发,一些新的企业,如Fireeye、Splunk等,也都凭借大数据在IT业界暂露头角。 环顾国内,很多公司也在进行大数据相关的研究并取得相当成果,但大部分都在应用分析方面,在信息安全分析方面却是新生事物,之所以新,是因为它引入了“列式数据模型”,弥补了传统“行式数据模型”的分析不足,这为信息安全的数据处理、数据分析提供了新的逻辑思维、新的分析角度,带来了新的安全价值。
在这些公司中,包括杭州合众信息在内的一些领先公司正走在这样趋势的最前沿。“言而优则唱”,长期的传统数据交换、数据安全分析实践使得这些公司在大数据处理、大数据安全分析方面具有先天优势。来自杭州合众信息的官方数据称,其与大数据处理相关的实时数据同步系统(RDS)、数据集成系统(ETL)、大数据一体化平台(UniOne)、大数据分布式全文数据库系统、大数据应用分析系统、综合安全审计系统等已经在住房和城乡建设部、工商总局、公安部、浙江公安等项目中有着不同程度的广泛应用,取得了极佳的社会价值。 信息安全已经上升为国家战略,信息安全应用环境也正发生着革命性的变化,强劲的驱动着这些传统的安全公司痴迷于大数据,希望利用大数据技术对传统信息安全赋予新的逻辑思维。
于是,基于大数据的信息安全,这个综合了多项技术的新兴事物应运而生,如雨后春笋。纵观这些公司,但凡能崭露头角的,其不仅需要有信息安全开发经验,需要对数据采集、处理、分析、应用等有较深的理解,更需要企业有较深的、长期的业务和应用背景来构建大数据的整体逻辑。相信这一些安全企业可以借助大数据扬帆起航,开启安全市场新篇章,将经验拓展到更为广泛的应用领域。 大数据,业务的开发需要具备多方面的业务储备。
数据处理能力
数据处理是数据挖掘和分析的前道程序。数据处理的目的是从大量的、可能是杂乱无章的、难以理解的数据中抽取对于特定的人群有价值、有意义的数据。
数据分析能力
由于事务型数据和决策支持型数据的处理性能不同,需将决策支持型数据处理从事务型数据处理中分离出来,再从事务型数据库中导入数据仓库,继而采用OLAP(联机分析处理)工具、数据挖掘工具等进行分析、智能决策,提高决策的科学性及完善各种管理流程。
大数据,受到资本市场追捧
直到今天,Gartner的态度依然没改变。在Gartner研究副总裁Anton Chuvakin近期撰写的博客文章中,尽管其依然承认基于大数据的安全技术具有良好的发展态势,但是由于复杂度太高,“95%的企业还未采用这一技术”。
布局未来,这是对当前着眼大数据技术的信息安全公司最为可靠的描述。实际上,一直在进行产业萌芽投资的资本市场,对于大数据领域一直持以认可态度。成立于2004年的Fireeye,在2013年上市后首日股价大涨80%。业内普遍认为,其在2011年前后转向APT防御与大数据方向,这一战略极大地推动了公司的发展。在国内,机构与投资人都对大数据保持着持续关注。光大证券分析认为,国内公司在大数据领域的机会在于对细分行业市场的理解。实际上,这同实际产业状况不谋而合。以合众信息为例,除了主营信息安全业务以外,其另一项重点业务――大数据的分析和处理所瞄准的就是政府行业。
合众信息的资料显示,其所提供的政府大数据服务,指的是服务于各个政府部门且根据部门业务需求搭建的大数据平台。平台不但提供大规模云平台技术支持、维护管理,还会根据数据特点组织大数据模型,提供满足业务实战要求的数据集成处理、应用开发集成。而整套系统的成功部署,已经为客户带了客观的经济效益。 大数据,似乎这是一个听起来已经被重复了无数次的老概念。
但是,其所承载的是人们对于信息技术的向往与憧憬。这种憧憬的实现,毫无疑问是一个漫长且艰辛的过程。不过,我们相信,在逻辑思维的道路上的那群人会坚定不移地走下去。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22