R编程语言在数字分析与机器学习领域已经成为一款重要的工具。随着机器逐步成为愈发核心的数据生成器,该语言的人气也必然会一路攀升。不过R语言当然也拥有着自己的优势与缺点,开发人员只有加以了解后才能充分发挥它的强大能力。
正如Tiobe、PyPL以及Redmonk等编程语言人气排名所指出,R语言所受到的关注程度正在快速提升。作为一款诞生于上世纪九十年代的语言,R已经成为S统计编程语言的一类实现方式。已经拥有十八年R编程经验的高校教授兼Coursera在线平台培训师Roger Peng指出,“R语言已经成为统计领域最具人气的语言选项”。
“我之所以喜爱R语言,是因为它易于从计算机科学角度出发实现编程,”Peng表示。而R语言随时间推移正呈现出愈发迅猛的发展态势,并成为能够将不同数据集、工具乃至软件包结合在一起的胶水型语言,Peng解释道。
“R语言是创建可重复性及高质量分析的最佳途径。它拥有数据处理所必需的一切灵活性及强大要素,”在线编程教育机构Code School数据科学家Matt Adams指出。“我用R语言编写的大部分程序实际上都是在将各类脚本整理到项目当中。”
R语言拥有强大的软件包生态系统与图表优势
R语言的优势主要体现在其软件包生态系统上。“庞大的软件包生态系统无疑是R语言最为突出的优势之一——如果某项统计技术已经存在,那么几乎必然存在着一款R软件包与之对应,”Adams指出。
“其中内置有大量专门面向统计人员的实用功能,”Peng表示。R语言具备可扩展能力且拥有丰富的功能选项,帮助开发人员构建自己的工具及方法,从而顺利实现数据分析,他进一步解释称。“随着时间的推移,越来越多来自其它领域的用户也被吸引到了R身边来,”其中包括生物科学乃至人文学科等。
“人们能够在无需申请权限的前提下对其进行扩展。”事实上,Peng回忆称多年之前R的使用方式就已经给相关工作带来了巨大便利。“当R语言刚刚诞生之时,它最大的优势就是以自由软件的姿态出现。其源代码以及所有一切都可供我们直接查看。”
Adams也表示,R语言在图形及图表方面的一切能够都是“无与伦比”的。其dplyr与ggplot2软件包分别用于进行数据处理与绘图,且“能够非常直观地提升我的生活质量,”他感叹道。
在机器学习方面,R语言的优势则体现在与学术界的强大联动效应,Adams指出。“在这一领域的任何新型研究成果可能都会马上以R软件包的形式体现出来。因此从这个角度看,R语言始终站在技术发展的尖端位置,”他表示。“这种接入软件包还能够提供良好的途径,帮助我们利用相对统一的API在R语言环境下实现机器学习研究。”Peng进一步补充称,目前已经有众多主流机器学习算法以R语言作为实现手段。
R的短板在于安全性与内存管理
说了这么多优势,R语言当然也存在着一定不足。“内存管理、速度与效率可能是R语言面临的几大最为严峻的挑战,”Adams指出。“在这方面,人们仍然需要努力推动——而且也确实正在推动——其进展与完善。此外,从其它语言转投R怀抱的开发人员也会发现后者在某些设定上确实有些古怪。”
R语言的基本原理来自上世纪六十年代出现的各类编程语言,Peng解释道。“从这个意义上讲,R语言在设计思路上属于一项古老的技术成果。”这种语言的设计局限有时候会令大规模数据集处理工作遇到难题,他强调称。因为数据必须被保存在物理内存当中——但随着计算机内存容量的不断提升,这个问题已经在很大程度上得到了解决,Peng指出。
安全等相关功能并没有被内置在R语言当中,Peng指出。此外,R语言无法被嵌入到网络浏览器当中,Peng表示。“我们不能利用它开发Web类或者互联网类应用程序。”再有,我们基本上没办法利用R语言当作后端服务器执行计算任务,因为它在网络层面缺乏安全性保障,他表示。不过Amazon Web Services云平台上的虚拟容器等技术方案的出现已经在很大程度上解决了此类安全隐患,Peng补充道。
长久以来,R语言当中始终缺少充足的交互元素,他表示。但以JavaScript为代表的各类编程语言介入其中并填补了这项空白,Peng指出。虽然我们仍然需要利用R语言处理分析任务,但最终结果的具体显示方式则可以由JavaScript等其它语言来完成,他总结道。
R语言并不单纯面向高端程序员
不过Adams与Peng都会R视为一种易于接受的语言。“我本人并没有计算机科学教育背景,而且从来没想过要当一名程序员。将编程基础知识纳入技能储备当然很不错,但这并不是上手R语言的必要前提,”Adams指出。
“我甚至并不认为R语言只适用于程序员。它非常适合那些面向数据并试图解决相关问题的用户——无论他们的实际编程能力如何,”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29