热线电话:13121318867

登录
首页精彩阅读数据挖掘中所需的概率论与数理统计知识(一)
数据挖掘中所需的概率论与数理统计知识(一)
2014-11-11
收藏

数据挖掘中所需的概率论与数理统计知识(一)


一个月余前,在微博上感慨道,不知日后是否有无机会搞DM,微博上的朋友只看不发的围脖评论道:算法研究领域,那里要的是数学,你可以深入学习数学,将算法普及当兴趣。想想,甚合我意。自此,便从rickjin写的“正态分布的前世今生”开始研习数学。

    如之前微博上所说,“今年5月接触DM,循序学习决策树.贝叶斯,SVM.KNN,感数学功底不足,遂补数学,从‘正态分布的前后今生’中感到数学史有趣,故买本微积分概念发展史读,在叹服前人伟大的创造之余,感微积分概念模糊,复习高等数学上册,完后学概率论与数理统计,感概道:微积分是概数统计基础,概数统计则是DM&ML之必修课。”包括读者相信也已经感觉到,我在写这个Top 10 Algorithms in Data Mining系列的时候,其中涉及到诸多的数学概念与基础知识(例如此篇SVM文章内诸多max.s.t.对偶.KKT条件.拉格朗日.松弛因子等问题则皆属于数学内一分支:最优化理论与算法范畴内),特别是概率论与数理统计部分。更进一步,在写上一篇文章的时候,看到机器学习中那么多距离度量的表示法,发现连最起码的期望,方差,标准差等基本概念都甚感模糊,于此,便深感数学之重要性。

    很快,我便买了一本高等教育出版社出版的概率论与数理统计一书,此书从0-1分布、到二项分布、正态分布,概率密度函数,从期望到方差、标准差、协方差,中心极限定理,样本和抽样,从最大似然估计量到各种置信区间,从方差分析到回归分析,bootstrap方法,最后到马尔可夫链,以前在学校没开概率论与数理统计这门课,现在有的学有的看了”。且人类发明计算机,是为了辅助人类解决现实生活中遇到的问题,然计算机科学毕竟只发展了数十年,可在数学.统计学中,诸多现实生活问题已经思考了数百年甚至上千年,故,计算机若想更好的服务人类解决问题,须有效借鉴或参考数学.统计学。世间万事万物,究其本质乃数学,于变化莫测中寻其规律谓之统计学。

    话休絮烦。本文结合高等数学上下册微积分概念发展史概率论与数理统计数理统计学简史等书,及rickjin写的“正态分布的前世今生”系列(此文亦可看作读书笔记或读后感)与wikipedia整理而成,对数据挖掘中所需的概率论与数理统计相关知识概念作个总结梳理,方便你我随时查看复习相关概念,而欲深入学习研究的课后还需参看相关专业书籍.资料。同时,本文篇幅会比较长,简单来说:

  1. 第一节、介绍微积分中极限、导数,微分、积分等相关概念;
  2. 第二节、介绍随机变量及其分布;
  3. 第三节、介绍数学期望.方差.协方差.相关系数.中心极限定理等概念;
  4. 第四节、依据数理统计学简史介绍正态分布的前后由来;
  5. 第五节、论道正态,介绍正态分布的4大数学推导。

    5部分起承转合,彼此依托,层层递进。且在本文中,会出现诸多并不友好的大量各种公式,但基本的概念.定理是任何复杂问题的根基,所以,你我都有必要硬着头皮好好细细阅读。最后,本文若有任何问题或错误,恳请广大读者朋友们不吝批评指正,谢谢。

第一节、微积分的基本概念

    开头前言说,微积分是概数统计基础,概数统计则是DM&ML之必修课”,是有一定根据的,包括后续数理统计当中,如正态分布的概率密度函数中用到了相关定积分的知识,包括最小二乘法问题的相关探讨求证都用到了求偏导数的等概念,这些都是跟微积分相关的知识。故咱们第一节先复习下微积分的相关基本概念。

    事实上,古代数学中,单单无穷小、无穷大的概念就讨论了近200年,而后才由无限发展到极限的概念。

1.1、极限

    极限又分为两部分:数列的极限和函数的极限。

1.1.1、数列的极限

    定义  如果数列{xn}与常a 有下列关系:对于任意给定的正数e (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切xn, 不等式 |xn-a |

    也就是说,

1.1.2、函数的极限

    设函数f(x)在点x0的某一去心邻域内有定义. 如果存在常数A, 对于任意给定的正数e (不论它多么小), 总存在正数d, 使得当x满足不等式0<|x-x0||f(x)-A|的极限, 记为

    也就是说,

    几乎没有一门新的数学分支是某个人单独的成果,如笛卡儿和费马的解析几何不仅仅是他们两人研究的成果,而是若干数学思潮在16世纪和17世纪汇合的产物,是由许许多多的学者共同努力而成。

    甚至微积分的发展也不是牛顿与莱布尼茨两人之功。在17世纪下半叶,数学史上出现了无穷小的概念,而后才发展到极限,到后来的微积分的提出。然就算牛顿和莱布尼茨提出了微积分,但微积分的概念尚模糊不清,在牛顿和莱布尼茨之后,后续经过一个多世纪的发展,诸多学者的努力,才真正清晰了微积分的概念。

    也就是说,从无穷小到极限,再到微积分定义的真正确立,经历了几代人几个世纪的努力,而课本上所呈现的永远只是冰山一角。

1.2、导数

    设有定义域和取值都在实数域中的函数。若在点的某个邻域内有定义,则当自变量处取得增量(点仍在该邻域内)时,相应地函数取得增量;如果之比当时的极限存在,则称函数在点处可导,并称这个极限为函数在点处的导数,记为
    即:

    也可记为:

1.3、微分

    设函数在某区间内有定义。对于内一点,当变动到附近的也在此区间内)时。如果函数的增量可表示为(其中是不依赖于的常数),而是比高阶的无穷小,那么称函数在点是可微的,且称作函数在点相应于自变量增量的微分,记作,即的线性主部。通常把自变量的增量称为自变量的微分,记作,即。 
    实际上,前面讲了导数,而微积分则是在导数的基础上加个后缀,即为:

1.4、积分 

    积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。
不定积分的定义
    一个函数的不定积分,也称为原函数或反导数,是一个导数等于的函数,即
    不定积分的有换元积分法,分部积分法等求法。
定积分的定义
    直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分
    定积分与不定积分区别在于不定积分便是不给定区间,也就是说,上式子中,积分符号没有a、b。下面,介绍定积分中值定理。
    如果函数f(x)在闭区间[a,b]上连续, 则在积分区间[a,b]上至少存在一个点,使下式成立:
    这个公式便叫积分中值公式。
牛顿-莱布尼茨公式
    接下来,咱们讲介绍微积分学中最重要的一个公式:牛顿-莱布尼茨公式。
     如果函数F (x)是连续函数f(x)在区间[a, b]上的一个原函数, 则
    此公式称为牛顿-莱布尼茨公式, 也称为微积分基本公式。这个公式由此便打通了原函数与定积分之间的联系,它表明:一个连续函数在区间[a, b]上的定积分等于它的任一个原函数在区间[a, b]上的增量,如此,便给定积分提供了一个有效而极为简单的计算方法,大大简化了定积分的计算手续。
    下面,举个例子说明如何通过原函数求取定积分。
    如要计算,由于的一个原函数,所以

1.5、偏导数

    对于二元函数z = f(x,y) 如果只有自变量x 变化,而自变量y固定 这时它就是x的一元函数,这函数对x的导数,就称为二元函数z = f(x,y)对于x的偏导数。
    定义  设函数z = f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量时,相应地函数有增量
    如果极限
    存在,则称此极限为函数z = f(x,y)在点(x0,y0)处对 x 的偏导数,记作:
    例如。类似的,二元函数对y求偏导,则把x当做常量。
    此外,上述内容只讲了一阶偏导,而有一阶偏导就有二阶偏导,这里只做个简要介绍,具体应用具体分析,或参看高等数学上下册相关内容。接下来,进入本文的主题,从第二节开始。本文来自:https://www.cda.cn/


数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询