如何设计企业级大数据分析平台_数据分析师考试
传统企业的OLAP几乎都是基于关系型数据库,在面临“大数据”分析瓶颈,甚至实时数据分析的挑战时,在架构上如何应对?本文试拟出几个大数据OLAP平台的设计要点,意在抛砖引玉。
突破设计原则
建设企业的大数据管理平台(Big Data Management Platform),第一个面临的挑战来自历史数据结构,以及企业现有的数据库设计人员的观念、原则。数据关系、ACID在关系数据库几十年的统治时期是久得人心,不少开发人员都有过为文档、图片设计数据表,或将文档、图片序列化为二进制文件存入关系数据库的经历。在BDMP之上,我们需要对多种不同的格式的数据进行混合存储,这就必须意识到曾经的原则已经不再适用——One size dosen’t fit all,新的原则——One size fits a bunch.
以下是我列出的一些NoSQL数据库在设计上的模式:
文档数据库:数据结构是类JSON,可以使用嵌入(Embed)或文档引用(Reference)的方式来为两个不同的文档对象建立关系;
列簇数据库:基于查询进行设计,有宽行(Wild Rows)和窄行(Skinny Rows)的设计决策;
索引数据库:基于搜索进行设计,在设计时需要考虑对对每个字段内容的处理(Analysis)。
搜索和查询的区别在于,对返回内容的排序,搜索引擎侧重于文本分析和关键字权重的处理上,而查询通常只是对数据进行单列或多列排序返回即可。
数据存储的二八原则
不少企业在解决海量数据存储的问题上,要么是把关系数据库全部往Hadoop上一导入,要么是把以前的非结构化数据如日志、点击流往NoSQL数据库中写入,但最后往往发现前者还是无法解决大数据分析的性能瓶颈,后者也无法回答数据如何发挥业务价值的问题。
在数据的价值和使用上,其实也存在着二八原则:
20%的数据发挥着80%的业务价值;
80%的数据请求只针对20%的数据。
目前来看,不管是数据存储处理、分析还是挖掘,最完整和成熟的生态圈还是基于关系型数据库,比如报表、联机分析等工具;另外就是数据分析人员更偏重于查询分析语言如SQL、R、Python数据分析包而不是编程语言。
企业大数据平台建设的二八原则是,将20%最有价值的数据——以结构化的形式存储在关系型数据库中供业务人员进行查询和分析;而将80%的数据——以非结构化、原始形式存储在相对廉价的Hadoop等平台上,供有一定数据挖掘技术的数据分析师或数据工程师进行下一步数据处理。经过加工的数据可以以数据集市或数据模型的形式存储在NoSQL数据库中,这也是后面要讲到的“离线”与“在线”数据。
理解企业的数据处理需求
数据库到数据仓库,是事务型数据到分析型数据的转变,分析型数据需要包括的是:分析的主题、数据的维度和层次,以及数据的历史变化等等。而对大数据平台来说,对分析的需求会更细,包括:
查询:快速响应组合条件查询、模糊查询、标签
搜索:包括对非结构化文档的搜索、返回结果的排序
统计:实时反映变化,如电商平台的在线销售订单与发货计算出的库存显示
挖掘:支持挖掘算法、机器学习的训练集
针对不同的数据处理需求,可能需要设计不同的数据存储,还需要考虑如何快速地将数据复制到对应的存储点并进行合适的结构转换,以供分析人员快速响应业务的需求。
离线数据与在线数据
根据不同的企业业务,对“离线”的定义其实不一样,在这里离线数据特指在业务场景中适用于“历史数据”的部分。常见的历史数据查询分析一般来自于特定时间段,设计上需要考虑的是将数据存入历史库中时,建立时间索引。另一种情况是某种业务问题的定位或分析,在数据量巨大的情况下,基于Hadoop或Spark等框架编写分析算法并直接在平台上运行,可以大大节约数据导出导入、格式转换与各种分析工具对接的时间。
在线数据处理按照存储和分析的先后顺序,可分为批处理(先存储后分析)和流处理(先分析后存储)两类。Cassandra数据库的设计采用上数据追加写入模式,可以支持实时批处理;流式计算平台则有Apache Storm、Yahoo S4等开源框架,商业平台有Amazon Kenisis(部署在云端)。企业的实时分析需求往往有特定的应用场景,需要对业务和现行系统有深入的理解才能设计出一个合理的架构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31