“互联网+”与大数据车险_数据分析师考试
“大数据”为车险行业发展提供了更多可能性。保险公司通过“大数据”可以多维度实现车险的差异化定价,进一步推动风险和保费更加科学合理地匹配。“互联网+”时代,中国保信在大数据车险的应用场景及市场展望中究竟占有何等地位?
银行业有银联 (中国银行卡联合组织),证券业有中证登(中国证券登记结算有限公司),保险业有中国保信(中国保险信息技术管理有限责任公司)。“互联网+”时代,建设信息共享平台成为各金融行业摘取大数据果实的强劲抓手。
事实上,保险是对“大数据”拥有天然需求的金融行业。随着保险业进入大发展时代,包括财险、寿险以及健康险等,对汇聚各险种数据资源进行整合利用,通过数据信息的挖掘和共享,建立一套科学的行业定价基准和风险数据指标的要求越来越迫切。
当前,正值商业车险改革、车险经营模式创新、车联网应用与探索的关键时期,在这场商业车险改革大戏中,如何实现车险产品从“以车定价”转向“以人定价”,最终实现品牌车型以及使用者的差异化定价,成立的主要目的是统一建设、运营和管理保险信息共享平台,为保险公司之间及保险业与其他行业之间信息交互提供支持的中国保信总裁吴晓军应邀发表权威观点。
车险改革与“大数据”战略
《当代金融家》:近日,保监会印发了《深化商业车险条款费率管理制度改革试点工作方案》(以下简称《方案》),提出了商业车险改革的时间表和路线图,同时明确了各相关单位的职责分工和工作任务:中国保险行业协会负责拟定商业车险示范条款和保费行业基准,建立商业车险新型条款评估和保护机制;财产保险公司负责自主确定商业车险条款,科学厘定商业车险费率,依法报批商业车险条款费率,建立商业车险条款费率监测调整机制。在这场商业车险改革“大戏”中,应如何看待中国保信的位置及作用?
据我们所知,中国保信在筹备期间的第一项工作就是整合车险平台。如今距离公司成立已有一年,各项准备工作已基本齐备,6月1日商改平台将正式上线。请您分享一下车险信息平台对商业车险改革起到的重要作用?
吴晓军:一个显而易见的事实是,在“大数据”时代,汽车产业的形态正在发生深刻改变,与之相连的车险业务变革也随之初显端倪。随着“大数据”应用的日益广泛,将影响并引领车险业走向费率市场化、管理精细化、数据规范化,为此应当未雨绸缪,励精图治,各方共同推进“大数据”在车险乃至保险领域的互动和应用。
某种意义上,成立中国保信最大的趋势是推动行业数据整合,因此,中国保信是以支持行业发展、服务保险监管、保护保险消费为使命,不以盈利为目的的市场化公司,主要职责是建设和运营集中统一、设计科学、功能完善、安全高效的保险业数据信息共享和对外交互平台。
中国保信被天然赋予了“大数据”的政策基因和行业责任,按照保监会关于全国车险平台整合工作方案,中国保信是全国车险平台的建设、运营和管理单位,因此我们希望能够广泛听取行业各方对车险平台建设的意见和建议,探索建立行业各方共同参与的信息平台共享共建机制,在平台需求分析、管理和决策,以及网络连接、接口标准、安全建设、技术架构上实现行业共商,在支持创新、服务发展、保护消费者利益上实现行业共赢。
全国车险信息平台是贯彻落实国家《机动车交通事故责任强制保险条例》以及商业车险监管政策规定,为建立车险信息共享与交互机制,支持我国交强险制度实施和车险市场科学发展而搭建的行业公共基础设施。截至2015年3月底,全国车险平台覆盖全国35个省市、59家保险总公司、820家省级保险分公司,拥有交强险和商业险两个核心系统,以及若干周边子系统和辅助系统,实现了行业多年车险承保和理赔数据的存储、共享和实时交互。
全国车险平台从行业试点探索,全国推广到功能不断拓展和完善,已经经历和伴随了车险市场改革发展近10年时间,车险信息共享机制对于行业实施大数据战略和推进费率市场化改革具有重要的战略意义。
首先,车险信息平台是行业与外部数据交互应用的重要基础和依托。目前,全国车险平台已经与公安、交管、税务等相关外部管理单位实现了一定范围的信息交互和共享。我们也积极引入公安部、交通部、中国汽车研究中心等行业数据管理部门的权威身份、交通和汽车生产数据,依托行业数据共享的优势,拓宽行业整体数据维度。未来,我们还将积极引入公安、气象、医疗、教育、信用、移动通信等外部数据,主动与交管、税务、经侦、社保等公共管理部门进行数据交互,依托车险多维度数据支持保险自身信用体系建设,并纳入国家征信体系,发挥外部数据在行业内部治理中的独特作用,依托行业信息共享机制有效延伸保险参与社会治理的范围和触点。
其次,车险信息平台是车险费率市场化改革的重要技术支撑。此次商业车险改革以市场化为导向,对现有定价模式、费率浮动机制、条款责任和体例都进行了大幅度调整,自去年以来,车险平台按照新的业务规则和监管需求进行了大量的系统改造,配合建设行业车型及纯风险保费库,落实代位求偿及结算,组织保险公司进行系统开发、联调测试,通过系统实现商改的有关规则调整。依托平台数据、技术和资源,配合保监会开展了数据提取和费率测算,未来可以依托平台实现费率测算常态化、费率监测动态化。同时,面对商改费率下行压力,平台在加快推进反欺诈系统、数据分析系统等应用系统建设,促进保险公司反欺诈水平和成本控制能力提升,提高保费充足率,挤压理赔水分,改善保险公司经营绩效,促进商业车险改革成果实现与平稳过渡。
最后,车险信息平台是车险产品和服务创新的重要数据支持。我们希望依托车险信息平台为车险产品和服务创新以及“大数据”应用提供技术支持服务。一方面,积极探索和支持保险业参与汽车后市场。我国二手车市场高速发展、前景广阔,北京、郑州等地区的二手车交易已超过新车交易,但管理混乱、诚信缺失特别是价值和风险评估机制不健全是根本的制约因素。今年,我们已在北京地区试点汽车质量延保责任险的风险评估服务,未来将逐步搭建起延保业务专门平台,探索延保业务风险评估、数据采集与共享机制,培育和促进延保责任险市场发展。另一方面,我们也在积极探索车联网技术应用研究。目前,我们受保监会委托,启动了车联网保险应用研究项目,内容包括车联网技术和保险业应用的全球经验,车联网技术对车险市场的影响与挑战、应用场景与模式、产品定价与监管等等,也希望依托车险平台为行业基于车联网的产品创新、商业模式以及监督管理提供服务和支持。
“以客户为中心”的大数据车险
《当代金融家》:众所周知,车险定价方式主要有保额定价、车型定价及使用定价三类。我国目前仍处于保额定价阶段,没有费率区隔。而车型定价是欧美保险市场普遍采用的车险定价模式,对车辆风险的评估准确度更高。车型定价对“海量”数据以及数据处理的需求,令车险信息平台的建设必不可少。据此,您如何看“大数据”车险市场的应用场景与展望?
吴晓军:首先,“大数据”将助推车险定价步入新的发展阶段。“大数据”相对于保险定价依赖的传统数据,已经从历史数据扩展到在线数据,从样本数据拓展到全量数据,从结构化数据拓展到非结构化数据。保险定价的基本原理就是“大数法则”,依托这一统计学定律,确保纯风险保费的公平性、合理性和充足性。而“大数据”是一种新的定价理念和风险管理辅助工具,保险企业通过采集和获取客户行为、交易的网络数据进行关联分析,找寻数据背后风险与成本、收益的匹配规律,可以推动保险公司客户细分化、责任碎片化、产品定制化,优化精算定价模型,实现定价差异化、精准化。
我认为,在未来车险市场竞争中,无外乎两个核心要素,一个是渠道,这是由“渠道为王”的保险业经营管理模式所决定的;另一个是定价,在保险费率市场化改革的大背景下,定价将成为保险企业安生立命的核心要素。谁拥有数据及数据技术,谁便具备了定价优势,谁就能在新的游戏规则中胜出。
“大数据”在车险定价应用的一个典型案例就是UBI产品(Usage Based Insurance),即通过车联网技术将驾驶操作、汽车运动状态和车辆周围环境等人、路、车数据信息进行传输和存储。保险公司从数据中挖掘出用户的驾驶习惯、思维习惯和行为模式,建立以“从人”为主的多维度定价模型。通过欧美车联网保险市场的实践验证,基于驾驶行为的定价比传统定价模式更为科学和有效。美国经历了超过15年的研究推广,车联网保险产品和技术在车险市场已日趋成熟,在美国个人车险市场,前十大保险公司有9家已推出UBI产品。在国内,车联网保险产品还处于起步探索阶段。近年来,各方意识到车联网在保险市场的应用潜力,都在积极探索家用车车联网产品。如人保、平安等公司已经开始摸索产品形态,搭建产品流程及系统,收集研究客户反馈。当然,车联网在车险产品定价和创新应用方面,还应当与目前我国车险费率市场化改革政策和实践形成良性互动。
其次,大数据将助推精准营销和客户细分,实现真正以客户为中心。自改革开放以来,保险市场保费和资产规模迅速扩张,却难以逃脱产品同质化、“跑马圈地”、价格恶性竞争、服务体验差的外部诟病,归根到底还是源于“以产品为中心”的粗放式发展模式。然而,“以客户为中心”的精准营销、个性化服务,如果失去大数据的支持,无异于小船在大海上无导航漂泊,最终无法到达彼岸。“大数据”技术可以更加客观、多维度地对客户进行分析研究,必将成为提高企业竞争力和创造消费者需求的关键要素。
随着车险网销、电销等直销渠道的普及和快速发展,未来互联网将成为车险市场的“主战场”,互联网车险市场具有信息量大、传导速度快、高度透明的特点,保险企业必须借助互联网大数据精准了解客户需求,确定渠道投入的方式方法,即“在对的时间、为对的客户、提供对的产品”,全面提升客户体验,建立新型的网络自助服务体系,让客户足不出户就可以方便快捷获得投保选择、电子保单、在线客服、报立案件、索赔、赔款支付等保险服务。通过互联网提供保险服务,保险公司可以降低职场租金、代理人佣金和薪资,承保理赔实现无纸化、便捷化,费用成本可以大幅降低。这都有助于从价值上实现“以客户为中心”,因此,未来车险市场将逐步形成线上、线下两个平台。
再次,大数据将助推保险反欺诈风险识别与控制。据国际保险监督官协会的经验估计,保险欺诈占到保险赔付总额的10%~20%,而车险又是保险欺诈犯罪的“重灾区”。我们从行业反欺诈实际工作中发现,当前车险欺诈案件呈现出团伙化、专业化、流程化等特点,整个保险欺诈案件的所有手续造假都非常缜密,背后已存在利益集团操作,传统风险控制方式面临“瓶颈”。“大数据”时代的信息技术和创新应用为保险反欺诈工作开创了新途径,在数据完善和历史积累的基础上,从特征分析、因子分析和网络分析入手,可以建立高效的反欺诈鉴别机制,提高反欺诈的靶向性。
近年来,车联网技术已经在一些行业取得了成功,尤其是在物流运输和车队管理方面,利用车联网技术,可以监测车辆、货物在运输途中的去向;借助车联网数据,可以管理司机的驾驶行为,达到节油、省时和安全的目的,从而提高经营效益。未来,这些技术将会更加充分地运用到车险欺诈风险的识别与控制上来。
最后,大数据将助推保险与汽车产业的渗透与融合。在“大数据”时代,保险与汽车将会以数据为媒介进一步实现产业融合与渗透,现在车里面装有越来越多的智能设备,这些用途繁多的装置原来是厂商在制造环节装进去的,未来更多可能是基于保险视角前装或后装的。由于保险对车辆数据的采集和应用,对于汽车生产销售、汽车安全隐患及事故处理、零配件的流通与使用,保险公司也许会比汽车制造商更早、更全、更快的掌握,因为前者更加贴近汽车用户,承担了大部分的车辆维修成本。未来汽车制造商会更加注重保险公司的意见和建议,不断提升车辆性能,优化汽车后市场服务。
更为关键的是保险公司拥有车辆的索赔数据,通过将车辆数据与保险数据相结合,未来可以研究制定建立一套完善的车辆风险评级标准,这对车辆投保、汽车质量延保、二手车定价等均可以提供有效和准确的数据支持,并根据保险数据与车辆数据分析车辆安全状况,为交通管理部门提供服务。
此外,其他行业的渗透也影响着传统保险市场,特别是科技网络公司,通过对互联网客户数据的采集分析和“大数据”处理能力,将及时抓住机会,进行跨业经营,很多创新甚至可能颠覆车险市场的局部规则与业态。
“互联网+”时代的二次创业
《当代金融家》:目前,虽然大部分险企都建有自己的数据库,人保财险[微博]、国寿财险、平安财险和太平洋财险等多家公司也在试水车联网,但中国保信的现有行业地位和今后发展前景,却被市场各方看好。立足于行业背景,您对“大数据”时代的车险发展有何建议?
吴晓军:当今世界,数据已经渗透到经济社会的各个领域,引领着电子商务、金融投资等各方面的创新与应用,推动了相关行业升级和转型发展。“大数据”、车联网和云计算,已然成为未来车险市场转型升级的核心驱动力,为保险业改造“红海”、开创“蓝海”提供了新的机会和场景。在“大数据”时代,如何构造新型的车险产业链,实现传统车险与信息技术发展、与汽车工业发展的深度融合,进一步提升车险的内在价值,进而带动其他相关产业的发展,从某种意义上讲,更像保险业的“二次创业”,意义重要而深远。
一要研究制定行业“大数据”战略和设施框架。建议保险监管部门完善信息共享平台和保单登记的监管制度框架,为行业“大数据”战略实施建立良好的政策环境。加强行业级“大数据”建设,重点推动行业数据标准化建设和有效落地,提高数据整体质量。指导和优化行业共享数据库的采集、存储、处理与结果应用的流程和技术,研究建立行业数据分析框架和模型,依托数据挖掘、云计算平台、虚拟化技术,支持海量、多结构类型、高频度的“大数据”处理。加强行业信息共享的安全体系建设,保障保险机构与共享信息关联生产的连续性、安全性和稳定性。
二要在保险经营和客户服务中嵌入数据思维。保险公司应加强公司内部、各渠道、各产品线的数据整合利用,积极采集全面反映客户行为特征和交易偏好的移动互联、社交媒体、电商、地理位置、OBD等线上数据,引入身份、信用、车辆、驾驶行为等线下数据,构建完整的客户数据图谱。依托数据挖掘技术,推进客户需求分析和客户群组细分,在公司内部建立客户虚拟账户,丰富客户全景视图,加强客户挽留与个性化推荐,促进客户的获取率、留存率和持续率。构建完善的客户自助服务体系,改善客户体验、提升客户忠诚度、提高客户整体价值。保险经营中应嵌入数据分析思维,以数据分析为依据,找出最棘手问题的真正原因,预测未来情况,从而识别差异化竞争的机会并实现业务增长。
三要以数据为媒介,建立“汽车+保险”的生态圈。商业车险改革是中国保险业的“二次创业”,未来基于人、路、车等驾驶数据的UBI车险将成为核心。通过将车辆数据和保险数据相结合,保险公司可以进一步为汽车投保和延保,以及为二手车定价等提供准确有效的数据支持。在这样的趋势下,保险行业和汽车产业可以数据为媒介,进一步实现产业的相互渗透和融合。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05