大数据时代下 如何让数据驱动业务_数据分析师考试
如何让数据驱动业务?这是大数据时代下企业必须思考的关键问题。如今,企业需要应对太多的业务部门需求,而数据的复杂性决定了企业必须利用商务智能以应对业务需求的变化和不确定性,信息处理能力的强弱决定了企业兴衰成败的关键。很多企业花费了大量的财力、人力、物力去构建联机事务处理(OLTP)和企业资源计划(ERP),积累了大量的数据,然而传统的分析工具很难及时、准确地对这些数据进行商务分析,商务智能技术的产生为这些问题提供了解决方案。
然而,基于数据分析的商务智能平台在大数据时代面临着越来越多的机遇和挑战,许多企业在商务智能问题的认识上存在许多误区,以下列举了六种常见的问题。
让IT部门管的太多
让IT部门做商务智能平台采购,结果往往不尽如人意,这是因为为了使采购风险最小化,IT部门大多把注意力放在稳定性、可扩展性、安全性和供应商声誉这类因素上。
而Boris Evelson——Forrester Research的分析师,他警告我们最好不要这样做,在采购决定上给终端用户(IT部门人员)太多的发言权会是一个代价高昂的错误。
Boris Evelson还指出:“桌面系统或云系统可以满足商业用户的需求,而且这样不需要依赖IT报告开发商,但也可能会导致解决方案不安全或者不可靠,所以最好折中考虑。”
忽视用户的商务智能需求
企业在投资商务智能时,最可能犯的一个错误是没有将系统性能与用户的实际需求结合起来。这一点在很多人看来似乎并不重要,然而,很多企业都会因为这个基本错误导致商务智能系统实施的失败。
Rita Sallam是Gartner的分析师,她在谈到商务智能时告诉我们:“这些系统会花费企业数百万美元,有时候它们能提供的实际价值却很少,甚至没有,最关键的原因在于采购和用户需求不匹配。”
要避免这样的问题,至关重要的一点是要建立一个具体的用户需求报告功能,确保用户参与到商务智能系统的采购和实施中。Sallam还告诉我们:“可能出现用户需要交互式报表,而系统只能生成静态报表这样的情况,也有可能出现系统功能太简单或者太复杂的情况。”
低估用户培训和用户支持的成本
“许多企业在作商务智能的预算时,仅考虑购买软件的成本,当然也许会考虑短期(比如两个星期)的用户培训成本。如今商务智能系统的复杂度不容低估,要想从系统中获得真正的价值必须有更长时间的用户培训。”
在不久前的一次统计中,大约30%的企业已经计划使用基于云的商务智能平台。根据Gartner调查显示,这一数字现在已经超过了45%。Sallam表示:“这意味着就算你选择的商务智能系统供应商目前没有基于云的产品,那它也至少应该有这样的计划,以满足你未来可能的商务智能需求。”
当然对于未来需求,云不是唯一需要考虑的因素,还要考虑怎样让复杂的分析变得易于用户理解,考虑如何将交互式发现转变为自动发现,供应商的产品路线图中至少有相关的计划。
很多企业选择商务智能系统供应商时,缺乏一些长远的考虑,比如供应商能否满足企业未来的需求,缺乏长远考虑会导致商务智能系统只能在短期发挥作用。
缺乏整体考虑
商务智能实际上主要用于分析数据,如果你打算访问JD Edwards、PeopleSoft、SAP或者其他大型ERP系统中的数据,那就不能低估商务智能的作用。Evelson提醒我们:“访问数据并不容易,访问数据不是说简单地访问数据库,还需要理解元数据以及数据的布局方式。”
为节约成本采用非专业的商务智能工具
Evelson告诉我们,所有业务分析中,大约有80%是使用简单工具完成的,这些工具包括Microsoft Excel和Access。采用非专业的商务智能工具也有好处,比如便宜、易于使用而且高效(针对简单的业务分析)。
但是非专业商务智能工具只适用于小型企业:它们可以分析TB级数据,但对于处理更大的信息量就显得吃力了;它们会产生一个“孤立的电子表格库(spreadsheet silos)”;对于同一个问题,针对企业的不同部门,可能会给出不同的回答,因为它们对于同一事件没有统一的描述。
更糟糕的是,非专业智能工具会带来安全和业务风险,Evelso 警告我们:“对于‘谁可以访问数据、谁可以处理数据’,你很难作出限制,而且一旦数据或者某个公式出错,那基于这些处理结果得到的信息会带来很大的问题。”
此外,不同的企业所处商务智能的阶段不同,面临的问题也不一样,一些企业商务智能平台已经发展到数据挖掘阶段,有些则处于数据分析阶段,甚至很多企业还处于报表阶段。处于报表阶段企业的商务智能往往面临数据量很大、有价值信息太少的问题,数据处理难度大。定制好的报表缺乏灵活性,因为业务经常要从多个角度分析问题,所以用户需要交互性报表,了解到不同数据的组合并产生新的信息,解决新的问题。
写在最后
正确地认识这些问题是发展“企业”商务智能的关键,这里的企业其实包含了各行各业的组织机构。比如政府部门、教育机构、医疗机构和公用事业,商务智能有着广泛的适用面。商务智能问题其实也是一类数据管理问题,包括对数据的存储、提取、清洗、转换、装载、整合……一系列的数据处理,为的是提高数据的质量和安全性。企业要充分发挥出商务智能的优势,必须依靠更加强有力的工具,这有赖于人工智能、机器学习、数据仓库技术、专家智能系统等科学技术的进步和发展。商务智能体系的建立是一项长期、艰巨的任务,企业需要很强的领导力和执行力才能保证商务智能发挥出真正的优势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31