互联网+时代 “大数据”成为“大泄露”_数据分析师考试
在互联网+时代,谁能保障我们的隐私?有什么高科技可以帮助企业更全方位的保护自己的“大数据”吗?
当然有,一旦涉及到这种数据敏感的事情,必须要找生物识别技术啊。目前,主要四种生物识别解决方案可以帮助企业降低成本,提高效益。
1、物理安全控制
我们所熟知的个人身份识别的方式有很多种,例如:锁,密码,ID卡等,但是现在都已经过时了,他们不但让人没有安全感而且还需要很大一笔费用来维护。美国零售商协会公布60%的存货损失是由于员工盗窃导致的,仅在2013年就损失了330亿!显然,在行业内提高安全控制系统已经势在必行。
生物识别能够帮助企业多一层保护,特别是对一些重要的资产或基础设施进行保护,例如:办公楼,核心实施以及一些未经授权的区域。
2、人力资源管理
生物识别在企业中应用最普遍的方面就是人力资源管理系统,它是利用虹膜、指纹、静脉识别来进行追溯和考勤。美国Acuity公司曾做过一次市场报告,报告指出,截止到2008年,全球生物识别考勤设备的应用已经超过400万,这些设备的使用可以帮助防止员工无故翘班,简化流程,提高效率,这对于企业来说无疑是巨大的收益。最近一项研究表明,美国公司每年由于员工偷懒会失去近40亿美元。此外,行业研究已经明确表明,大多数企业至少会将总预算的50%用于薪酬和员工管理方面,特别是对于大型企业,例如工厂或工业区,他们的工人数量是成百上千的,自然成本也就高很多。
生物识别跟踪系统已经显现出明显的节约优势。正如报告中支出的,那些所采用生物识别系统的公司,他们已经节约了预算总额的5%。美国Crossland公司的IT经理说:“估计我们公司第一年就节省了850万美元。”
3、使用生物识别单点登录数据访问管理
生物识别单点登陆(SSO)作为一种安全的数据库访问方法,它需要用户提供自己的生物特征来替代密码或者PIN。一旦他们登陆,他们将获得进入所有系统的通行证,而不次需要每次提示重新登录。
利用生物识别特征认证的SSO能提供更强大的身份验证和更高的安全性。现在,内部数据盗窃已经不可避免,一项有来自美国,英国,德国,法国和加拿大参与者参与的调查表明,数据信息泄露36%是由于员工使用不当或者疏忽造成的结果,而25%是来自内部人员的蓄意攻击。
此外,世界范围内的企业都遭受着数据丢失的内患,一项调查结果显示,世界上大约3900家企业由于数据丢失而损失金额成本平均在66万美元到938万美元之间。不安全的身份管理,弱密码和个人数据访问的不当认证往往是大多数企业数据安全漏洞的根源所在。采用生物识别SSO将会给企业带来很多优势,例如:更多的股票收益,更强的反欺骗能力,更高的识别精度,易于管理以及节约成本。
4、生物识别数字化签约
数字化签约已经在那些需要合法授权交易的组织中非常的普遍,例如:电子交易,电子邮件签约和电子政务在当今已经是一个不断发展的新趋势。电子签约能够提供很多益处,但是它们仍需要不断的自我完善,因为黑客们也在不断升级,使得传统的密码和智能卡遭受被假冒和访问权限丢失的风险。试想一下,当攻击者诱骗受害者签订不利的条款合约,把那些包含隐私的邮件发给用户本身并不知晓的收件人时,会发生什么?
而生物识别数字签名技术将会帮助解决传统数字签名单一识别的问题,解决用户丢卡或忘记密码的烦恼。
综上,生物识别技术不紧能够保护用户额隐私,提供更安全可靠的保护措施,而且还能够帮助企业有效的管理员工,提高效率,节约成本,这已然成为当今社会企业发展的必然趋势。当然,2014发生在国内外的数据泄密事件高达1367起,这还是属于已经确认的,我们可以想象还有多少无从确认或者无法公开的事件,2015年是不是会出现更过的泄露事件?大数据本身是为了提升我们的用户体验,而不是泄露用户的隐私的,不要让我们的大数据成为“大泄露”!
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21