大数据时代传统报业如何占位(1)_数据分析师考试
大数据时代的大门刚刚开启,巨头、中小企业、各类机构都将重新寻找在互联网中的位置,报业如何立足优势恰当占位?需要务实创新的思考和回答。
数据再“大”无用武之地等于零,要搜集“慢数据” “活数据”
互联网上每时每刻都在产生数据,人们生活中无所不在的各种设备,比如电脑、手机、智能电器、感应器等等,都能时刻留下人的行为痕迹,实时产生数据,这些呈几何级增加的数据沉淀在网上,成为大数据。这些大数据有多大用?
2014年5月29日,百度董事长兼CEO李彦宏在第九届百度联盟峰会上预测了“未来5年有非常大的发展”的两大产业机会,这两大产业是“BAT(百度、阿里巴巴、腾讯)三者都不会涉足的领域”:1.新型企业级软件,解决企业从内部到外部链接的问题;2.挖掘新的有价值的“慢数据”,发掘个性化的预测信息,为用户寻找真正有价值的新数据。
李彦宏的分析有共识性、有说服力——在用户规模扩大、流量激增的情况下,目前互联网企业面临尴尬:搜集上来真正有价值的数据很少,无价值数据增多,有价值数据积累并不比传统企业更有优势。“比如最近比较火的智能硬件,手环、眼镜,搜集很多的数据,但这些数据拿过来,总觉得用不上,没法分析。”为此,他建议企业通过搜集“慢数据”来获取真正有价值的数据,找准并挖掘能真正帮助用户解决问题的新数据。这一判断,对报业这样的传统企业来说既是一种安慰,更是鼓舞。
另一个与之印证的观点是,阿里巴巴集团执行副总裁曾鸣最近有一篇长文分析说,大数据最重要的特征不在大小,而在死活。数据的死活决定一切,从数据的管理到数据的运用,数据必须能活起来,开始跑通迭代,才能产生持续价值。
既然传统媒体与新兴媒体及很多大企业一样,对如何用好大数据基本站在同一起跑线上,对报业来说,如何利用自身优势和资源去发掘、应用好“慢数据”“活数据”,让大数据成为报业未来的一大新增长点,就成为迫切需要研究解决的重要课题。
报业在大数据产业中的一席之地在哪儿?
《大数据时代》的作者维克托•迈尔•舍恩伯格被誉为“大数据商业应用第一人”,他描述了大数据价值链的三大构成:第一种是基于数据本身的公司,这些公司拥有大量数据或者可以收集到大量数据。第二种是基于技能的公司,它们通常掌握了专业技能,但并不一定拥有数据,往往是技术供应商、分析公司或者咨询公司。第三种是基于思维的公司。
在互联网上,任何主动收集庞大数据的行为,其成本都难以想象。因此,基于数据本身的第一种公司在价值链中处于最核心的位置,比如美国的谷歌、苹果、Facebook、亚马逊,中国的腾讯、阿里巴巴、百度。他们的优势是大数据聚合和模型构建,他们也想方设法把自己打造成基础设施和平台,使大数据在自己的平台上发挥出最大效用。
比如, 2014年4月百度正式发布了大数据引擎,将核心大数据能力开放,向外界提供大数据存储、分析及挖掘的技术能力,以更好地帮助传统行业挖掘数据价值,加快传统行业转型升级。百度联盟将基于“开放云”“数据工厂”“百度大脑”三级开放平台,推进“人找信息”向“信息找人”的变革,为媒体、DSP、广告主、代理商提供更简单、高效的推广及变现平台。
而具有数据思维和数据技术的公司,在未来竞争中也处于有利地位,围绕着数据化变革,将衍生出新的商业模式。一是数据资产存储,二是数据资产定价,三是数据资产中介,四是数据资产管理,五是数据驱动的解决方案。①
从价值链和报业传统优势的角度分析,报业即使在采集、处理、储存、传播等各方面完全数字化后,即使数据量再大,与那些互联网入口企业相比、与真正生成大数据的公司相比,那点数据还远远不够大,因此不可能去做基于数据本身的公司。比较理性、可行的选择是,传统报业对大数据的运用着力点应是数据资产中介、数据资产管理、数据驱动的解决方案三大类。
数据资产中介——这个应用领域对媒体来说并不陌生,比如彭博社、路透社和《朝日新闻》、日本经济新闻社等新闻机构,收集免费的数据制成数据库,通过数据的加工和组合、分析产生新的价值,再卖给有需求的企业、机构。这是一些大通讯社和财经专业媒体的强项。
数据资产管理——听起来有点儿抽象,但其中可操作的内容对报业并不陌生。比如,网络上每天产生各种新闻、信息,特别是负面新闻、评论,无论对机构、企业和个人而言都是正面或负面资产,既然是资产,如何管理就是一门生意。舆论监督本就是报业的核心功能之一,加之媒体对舆论危机公关比较擅长,由此延伸到数据资产的管理,角色跨度并不很大,不失为基于报业资源优势的一种务实选择。
再看数据驱动的解决方案——对报业来说其应用领域相当广泛。未来,媒体在做好社会记录者与信息传播者外,更应定位成社会解读者和分析预测者,做好信息和数据的深度加工、深度解读和去伪存真的服务,而大数据无疑能成为报业进行全面深刻洞察的一大利器。 下面将具体分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29