大数据技术对于数据挖掘的未来究竟意味着什么(1)
我们都听说过如下的预测:到2020年,全球以电子形式存储的数据量将达到35ZB,是2009年全球存储量的40倍。而在2010年底,根据IDC的统计,全球数据量已经达到了120万PB,或1.2ZB。如果将这些数据都刻录在DVD上,那么光把这些DVD盘片堆叠起来就可以从地球垒到月球一个来回(单程约24万英里)。
对于动不动就忧天的杞人来说,如此庞大的数字可能是不详的,预示着世界末日的来临。而对于乐观主义者来说,这些数字却是一座信息金矿,随着技术的进步,其中所蕴含的财富会越来越容易被挖掘出来。
进入“大数据”时代,出现了不少新兴的数据挖掘技术,使得对数据财富的储存、处理和分析变得比以往任何时候都更便宜、更快速了。只要有了超级计算环境,那么大数据技术就能被众多的企业所用,从而改变很多行业经营业务的的方式。
我们对大数据技术的定义是:利用一些非传统的数据筛选工具(包括但不限于Hadoop)对大量的结构化和非结构化数据集合进行挖掘,以便提供有用的数据洞察。
大数据技术的概念和“云计算”一样,也存在着很多的炒作和大量的不确定性。为此,我们咨询了多位分析师和研究大数据的专家,让他们解释大数据技术是什么和不是什么,以及大数据技术对于数据挖掘的未来究竟意味着什么等诸多问题。
大数据技术的发展背景
对大企业而言,大数据的兴起部分是因为计算能力可用更低的成本获得,且各类系统如今已能够执行多任务处理。其次,内存的成本也在直线下降,企业可以在内存中处理比以往更多的数据。还有就是把计算机聚合成服务器集群越来越简单。IDC的数据库管理分析师Carl Olofson认为,这三大因素的结合便催生了大数据。
“我们不但能够把这些事情做好,而且能够以更低廉的成本去做这些事情,”他说。“过去有些大型超级计算机就曾涉足过繁重的多处理系统,一起构建成紧密聚合的集群,但由于都是专门设计的硬件,所以其成本动辄数十万甚至数百万美元。而现在,我们利用普通的商品化硬件也能获得同样的计算能力。这便帮助我们能够更快、更便宜地处理更多的数据。”
当然,并非所有拥有庞大数据仓库的企业都可以说他们正在使用大数据技术。IDC认为,某项技术要想成为大数据技术,首先必须是成本可承受的,其次是必须满足IBM所描述的三个“V”判据中的两个:多样性(variety)、体量(volume)和速度(velocity)。
多样性是指,数据应包含结构化的和非结构化的数据。体量是指聚合在一起供分析的数据量必须是非常庞大的。而速度则是指数据处理的速度必须很快。Olofson说,大数据“并非总是说有数百个TB才算得上。根据实际使用情况,有时候数百个GB的数据也可称为大数据,这主要要看它的第三个维度,也就是速度或者时间维度。假如我能在1秒之内分析处理300GB的数据,而通常情况下却需要花费1个小时的话,那么这种巨大变化所带来的结果就会增加极大的价值。所谓大数据技术,就是至少实现这三个判据中的两个的可承受得起的一种应用。”
与开源之关系
“很多人都认为,Hadoop和大数据是同义词。但这是个错误,”Olofson解释说。例如Teradata、MySQL和一些“聪明的集群技术”的实施案例都没有使用Hadoop,但也被认为是大数据的实施案例。
作为大数据的一种应用环境,Hadoop之所以能够引起人们的注意,是因为它是基于MapReduce环境的,这是超算圈里很常用的一种简化环境,主要是由谷歌所创建的一个项目。Hadoop是和各种Apache项目密切相关的混合实施环境,其中包含了在MapReduce环境下所创建的HBase数据库。
软件开发人员一般会用一切利用到Hadoop以及相似的高级技术的手段来响应——而这些技术很多都是在开源社区里开发的。“他们创建了一个令人眼花缭乱、变化多端的东西,即所谓的NoSQL数据库,该数据库的键值多数都已利用了各种技术在处理能力、多样化,或者数据库规模上做了优化的,”Olofson说。
开源技术一般是没有商业支持的,“所以这些东西还必须让其进化一段时间,逐渐剔除各种缺陷,而这一般需要数年的时间。这就是说,羽毛未丰的大数据技术目前还无法在普通市场上普及。”与此同时,IDC预计至少有三家商业厂商会在年底之前对Hadoop提供某种类型的支持服务。还有其他一些厂商,如Datameer等,也会提供带有Hadoop组件的分析工具,允许企业开发他们自己的应用。例如Cloudera和Tableau等已经在其产品中用到了Hadoop。
升级关系型数据库
行业观察家们一般都赞成在升级关系数据库管理系统(RDBMS)时也要考虑大数据技术。Olofson说,“大数据技术适用于速度更快、规模更大、成本更低廉的场合。”比如Teradata就把它的系统做得成本更低廉、具备可扩展性和集群环境。
然而还有些人则不这么认为。Gartner的数据管理分析师Marcus Collins说,“通常在使用RDBMS时,都要用到BI工具,但这种处理流程并非真的大数据。这种流程由来已久。”
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20