大数据时代下,你搞清楚市场营销该怎么做了么_数据分析师培训
一是通过大数据对用户行为与特征分析。显然,只要积累足够的用户数据,才能分析出用户的喜好与购买习惯,甚至做到"比用户更了解用户自己"。这是大数据营销的前提与出发点。过去虽也有"一切以客户为中心"作为口号的企业经营思想,可以想想真的能及时全面地了解客户的需求与所想吗,或许只有大数据时代这个问题的答案才能更加明确。
二是通过大数据支撑精准营销信息推送。过去多少年了,精准营销总在被许多公司提及,但是真正做到的少之又少,反而是垃圾信息泛滥。究其原因,主要是过去名义上的精准营销并不怎么精准,因为其缺少用户特征数据支撑及详细准确的分析。现在的RTB广告的应用则向人们展示了比以前更好的精准性,而其背后靠的是大数据支撑。
三是通过大数据让营销活动更能投用户所好。如果能在产品生产之前了解潜在用户的主要特征,以及他们对产品的期待,那么你的产品即可投其所好。如《小时代》在预告片投放后,即从微博、微信上通过大数据分析得知其电影的主要观众群为90后女性,因此后续的营销活动则主要针对这些人群展开。
四是通过大数据帮助企业筛选重点客户。许多企业家纠结的事是:在企业的用户、好友与粉丝中,哪些是最有价值的用户?有了大数据,或许这一切都可以更加有事实支撑。从用户访问的各种网站可判断其最近关心的东西是否与你的企业相关,从用户在社会化媒体上所发布的各类内容及与他人互动的内容中,可以找出千丝万缕的信息,利用某种规则关联及综合起来,就可以帮助企业筛选重点的目标用户。
五是通过大数据分析更加清晰你的产品消费者的特点。面对日新月异的新媒体,许多企业想通过对粉丝的公开内容和互动记录分析,将粉丝转化为潜在用户,激活社会化资产价值,并对潜在用户进行多个维度的画像,其目的就是更加精准地分析你的产品消费者特点。大数据可以分析活跃粉丝的互动内容,设定消费者画像各种规则,关联潜在用户与会员数据,关联潜在用户与客服数据,筛选目标群体做精准营销,进而可以使传统客户关系管理结合社会化数据,丰富用户不同维度的标签,并可动态更新消费者生命周期数据,保持信息新鲜有效。
在大数据分析架构下的众多商业管理模式中,UFO模型较为引人关注,这里U代表User experience,即用户体验,其对应的方向是产品设计;F代表Freemium,即免费商业模式,其对应的方向是商业模式研究和设计;O代表精细化运营,其对应的方向是产品营销运营。研究认为(2014)大数据在以下三个方面起到不同程度的作用。其中,大数据与U(用户体验)及F(免费商业模式)关联度中等,而与O(精细化运营)关联度最高。
今天我们的经营者大数据分析在商业模式设计、商业模式研究、创新商业模式等方面的能力还比较弱,可能到目前在中国还没看到非常成功的利用大数据分析来设计商业模式的案例,也许是因为计算机目前的智慧还没达到设计商业模式的能力高度。但我们可以通过大数据分析方法进行行业监测以及进行创新监测,从而可以辅助战略规划人员来进行商业模式的设计。
好产品是运营出来的,互联网产品需要不断运营、持续打磨。产品运营的目的是为了扩大用户群、提高用户活跃度、寻找合适商业模式并增加收入。成功的互联网运营要做到精细化运营,成功的精细化运营需要大数据支撑。大数据和互联网思维在此方面关联度最高。所以,企业在大数据的应用场景上,一定是要优先考虑如何通过大数据进行精细化运营,以驱动更好的运营效率和效果的提升。
基于大数据可以更好的做精细化运营监控、更准确的做用户细分、更准确的进行个性化推荐、更合理的进行营销推广效果的评估以及基于用户生命周期进行相关的营销策略创新。具体在以下几个方面值得关注:
1.通过基于大数据的方法进行用户细分。基于大数据可以找出更好的细分维度,并对用户做更好区隔,以辅助产品运营人员做更加准确的用户细分,并洞察每个细分人群的兴趣爱好和消费倾向,对每类用户分别进行有针对性的策划和运营活动。
2.通过大数据的方法,可以实现对不同通过渠道的效果评估。如果只看一些表面的数据,如广告的点击率,是非常难衡量不同推广渠道的真正效果。如果把用户的渠道行为和后续产品行为(即通过渠道获取的用户在产品上的各种使用行为)进行打通跟踪,在此数据基础上构建渠道质量评估模型,将能够更好的发现渠道的真正质量,或者更直接的,可以发现推广渠道的究竟有多少是虚假的流量。
3.通过利用基于大数据进行有针对性的用户画像,并通过用户画像数据、用户行为和偏爱,结合个性化推荐算法实现根据用户不同的兴趣和需求推荐不同的商品或者产品,通过算法真正的实现"投其所好",以实现推广资源效率和效果最大化。
数据分析咨询请扫描二维码
在当今以数据为导向的商业环境中,数据分析师的角色变得越来越重要。无论是揭示消费者行为的趋势,还是优化企业运营的效率,数据 ...
2024-11-17金融数学是一门充满挑战和机遇的专业,它将数学、统计学和金融学的知识有机结合,旨在培养能够运用数学和统计方法解决复杂金融市 ...
2024-11-16在信息时代的浪潮中,大数据已成为推动创新的重要力量。无论是在商业、医疗、金融,还是在日常生活中,大数据扮演的角色都愈发举 ...
2024-11-16随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15随着大数据技术的迅猛发展,数据已经成为现代商业、科技乃至生活各个方面的重要资产。大数据专业的毕业生在这一变革背景下,拥有 ...
2024-11-15在快速演变的数字时代,数据分析已成为多个行业的核心驱动力。无论你是刚刚踏入数据分析领域,还是寻求进一步发展的专业人士,理 ...
2024-11-15Python作为一种通用编程语言,以其简单易学、功能强大等特点,成为众多领域的核心技术驱动者。无论是初学者还是有经验的编程人员 ...
2024-11-15在当今数据驱动的世界中,数据分析已成为许多行业的基础。无论是商业决策,产品开发,还是市场策略优化,数据分析都扮演着至关重 ...
2024-11-15数据分析作为现代商业和研究领域不可或缺的一部分,吸引了越来越多的初学者。然而,自学数据分析的过程中,初学者常常会遇到许多 ...
2024-11-15在当今的数据驱动世界中,机器学习方法在数据挖掘与分析中扮演着核心角色。这些方法通过从数据中学习模式和规律来构建模型,实现 ...
2024-11-15随着数据在各个行业的重要性日益增加,数据分析师在商业和技术领域的角色变得至关重要。其核心职责之一便是通过数据可视化,将复 ...
2024-11-15数据分析师的职责不仅仅局限于解析数据和得出结论,更在于将这些复杂的信息转换为清晰、易懂且具有影响力的沟通。良好的沟通能力 ...
2024-11-15数字化转型是企业提升竞争力和实现可持续发展的关键路径。面对快速变化的市场环境,以及技术的飞速发展,企业在数字化转型过程中 ...
2024-11-15CDA数据分析师认证:CDA认证分为三个等级:Level Ⅰ、Level Ⅱ和Level Ⅲ,每个等级的报考条件如下: Le ...
2024-11-14自学数据分析可能是一条充满挑战却又令人兴奋的道路。随着数据在现代社会中的重要性日益增长,掌握数据分析技能不仅能提升你的就 ...
2024-11-14数据分析相关职业选择 数据分析领域正在蓬勃发展,为各种专业背景的人才提供了丰富的职业机会。从初学者到有经验的专家,每个人 ...
2024-11-14数据挖掘与分析在金融行业的使用 在当今快速发展的金融行业中,数据挖掘与分析的应用愈发重要,成为驱动行业变革和提升竞争力的 ...
2024-11-14学习数据挖掘需要掌握哪些技能 数据挖掘是一个不断发展的领域,它结合了统计学、计算机科学和领域专业知识,旨在从数据中提取有 ...
2024-11-14统计学作为一门基于数据的学科,其广泛的应用领域和多样的职业选择,使得毕业生拥有丰厚的就业前景。无论是在政府还是企业,统计 ...
2024-11-14在当今高速发展的技术环境下,企业正在面临前所未有的机遇和挑战。数字化转型已成为企业保持竞争力和应对市场变化的必由之路。要 ...
2024-11-13