大数据,新的战略资源_数据分析师考试
19世纪,海军军官出身的马修·方丹·莫里从库房发霉的木箱里发现了大量被海水浸泡过的航海日志,虽然是一些无章可循的东西,页面边上尽是奇怪的打油诗和乱七八糟的信手涂鸦,莫里却如获至宝,他从这些破损的航海日志中整理出了比如特定日期、特定地点的风、水和天气情况的记录,和20台“计算机”那些进行数据处理的人,把这些记录的信息绘制成表格。经过多年的努力,莫里最终绘制了多达120万数据点的导航图,让缺乏远洋经验的年轻海员们能够接受成千上万名经验丰富的航海家的指导,缩短航程,避开风险,抵达彼岸。
今天,越来越多的数据找到我们,覆盖我们,让我们不得不与之打交道,甚至成为其中的一部分。社交网络平台不仅给我们提供了寻找和维持朋友、同事关系的场所,也将我们日常生活的无形元素提取出来,转化为可作新用途的数据;像微博、Twitter这样的平台让人们能轻易记录以及分享他们零散的想法,从而使情绪化得以实现;淘宝、亚马逊这样的电子商务平台则将人们的购物喜好随时记录,将支付能力和信用进行数据化处理。今天的数据伴随着“随时记录、随时量化”而呈现爆炸式增长,就像莫里转化旧航海日志那样,通过存储、清洗、索引、分析,把信息转化为对现在的判断和将来的预测:小到我们可以认识谁,在哪里存在一份心仪的工作,大到预测流感爆发,编制国民幸福指数。
最近两年所产生的数据量等同于2010年以前整个人类文明产生的数据量总和,到2020年,全世界的信息如果装成光盘,光盘重量等于424艘美国尼米兹级航母。牛津大学互联网研究所Mayer-Schonberger教授指出,“大数据”所代表的是当今社会所独有的一种新型的能力以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,或深刻的洞见。而麦肯锡报告指出,只要具有适当的政策推动,大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
《大数据时代》作者维克托指出:“在亚当·斯密论述18世纪劳动分工时所引用的著名的大头针制造案例中,监督员需要时刻看管所有工人、进行测量并用羽毛笔在厚纸上记下产出数据,而且测量时间在当时也较难把握,因为可靠的时钟尚未普及。技术环境的限制使古典经济学家在经济构成的认识上像是戴了一副墨镜,而他们却没有意识到这一点,就像鱼不知道自己是湿的一样。因此,当他们在考虑生产要素(土地、劳动力和资本)时,信息的作用严重地缺失了。”
而今天,随着互联网技术的发展,数据的采集、存储和使用成本迅速下降。过去50年中,存储密度增长了5000万倍,这使得大数据成为匹敌土地、劳动力和资本的新的生产要素,成为新的战略资源。在医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;在公共管理领域,能够利用大数据有效推动税收征管,提高教育部门和就业部门的服务效率;在零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;在市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内,找到更合适的产品以满足自身的需求,提高附加值。
亚马逊前任首席科学家Andreas Weigend简单直白地指出: “数据是新的石油。” IBM提出,上一个十年,他们抛弃了PC,成功转向了软件和服务,而这次将远离服务与咨询,更多地专注于因大数据分析软件而带来的全新业务增长点。IBM执行总裁罗睿兰认为,“数据将成为一切行业当中决定胜负的根本因素,最终数据将成为人类至关重要的自然资源。”
未来,伴随着社交媒体、移动计算技术以及物联网的发展,各类传感器等嵌入系统的广泛应用,人类取得的数据量将以一千倍为单位持续激增。在这一背景下,数据储备和数据分析能力将成为未来新型国家最重要的核心战略能力。然而,现有的数据分析工具在数据的表示方法、计算模式、价值挖掘等领域的瓶颈如何突破,对数据质量、价值、权益、隐私、安全等的重新认识与措施保障,如何推动数据开放与交易,形成新的商业模式,产生新的商业链条,这些都将成为企业与政府面临的重大考验。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21