
R语言 Kolmogorov-Smirnov检验
Kolmogorov-Smirnov正态性检验
Kolmogorov-Smirnov是比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布的检验方法。其原假设H0:两个数据分布一致或者数据符合理论分布。
D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设。
R语言中的 Kolmogorov-Smirnov 检验
ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)
R语言中ks.test有四个参数,第一个参数x为观测值向量,第二个参数y为第二观测值向量或者累计分布函数或者一个真正的累积分布函数如pnorm,只对连续CDF有效。第三个参数为指明是单侧检验还是双侧检验,exact参数为NULL或者一个逻辑值,表明是否需要计算精确的P值。
> ks.test(rnorm(100),rnorm(50))
Two-sample Kolmogorov-Smirnov test
data: rnorm(100) and rnorm(50)
D = 0.16, p-value = 0.3503
alternative hypothesis: two-sided
> ks.test(rnorm(100),"pnorm")
One-sample Kolmogorov-Smirnov test
data: rnorm(100)
D = 0.0851, p-value = 0.4631
alternative hypothesis: two-sided
在上述第一个命令中,我们比较了两个均值和方差一样的观测值,他们D值很小,p值大于0.05,所以我们不能拒绝两个观测值分布相同的假设;在第二个命令中,我们比较了一个正态分布观测值和一个正态分布函数,D值很小,且p值大于0.05,不能拒绝其分布一致的假设。
> ks.test(rnorm(100),"punif")
One-sample Kolmogorov-Smirnov test
data: rnorm(100)
D = 0.5, p-value < 2.2e-16
alternative hypothesis: two-sided
在上述例子中,我们比较了一个正态分布数据和均一分布函数,p值小于0.05,我们可以拒绝原假设,二者分布不相同。
分布检验方法比较
² 图示法相对于其他方法而言,比较直观,方法简单,从图中可以直接判断,无需计算,但这种方法效率不是很高,它所提供的信息只是正态性检验的重要补充。
² 经常使用的拟合优度检验和Kolmogorov-Smirnov检验的检验功效较低,在许多计算机软件的Kolmogorov-Smirnov检验无论是大小样本都用大样本近似的公式,很不精准,一般使用Shapiro-Wilk检验和Lilliefor检验。
² Kolmogorov-Smirnov检验只能检验是否一个样本来自于一个已知样本,而Lilliefor检验可以检验是否来自未知总体。
² Shapiro-Wilk检验和Lilliefor检验都是进行大小排序后得到的,所以易受异常值的影响。
² Shapiro-Wilk检验只适用于小样本场合(3≤n≤50),其他方法的检验功效一般随样本容量的增大而增大。
² 拟合优度检验和Kolmogorov-Smirnov检验都采用实际频数和期望频数进行检验,前者既可用于连续总体,又可用于离散总体,而Kolmogorov-Smirnov检验只适用于连续和定量数据。
² 拟合优度检验的检验结果依赖于分组,而其他方法的检验结果与区间划分无关。
² 偏度和峰度检验易受异常值的影响,检验功效就会降低。CDA数据分析师学习
² 假设检验的目的是拒绝原假设,当p值不是很大时,应根据数据背景再作讨论。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03