Hadoop大数据重构智能交管
2015年7月23日,中国Hadoop技术峰会在上海浦东嘉里中心如火如荼地召开。下午的大数据应用分论坛,基于最新的大数据技术,结合落地应用案例进行讲解与讨论,也受到了业内外的广泛关注。
当日下午,来自公安部交通管理科学研究所的方艾芬主任在大数据应用分论坛上发表了题为《大数据在交通管理中的应用》的讲演,从技术革新到落地案例,多方面多角度地阐释了Hadoop大数据平台对交通管理方面的帮助与改革。
方主任首先对公安部交通管理研究所的性质与职能作了简要介绍。交通管理研究所是公安部直属的道路交通管理工程技术研究的科研机构,主要从事道路交通事故预防及鉴定技术、公安交通管理业务信息化技术、公安交通管理大数据技术及云计算技术、智能交通管理技术等技术领域的研究工作。
方主任的讲演从公安交通管理信息化的现状,机动车缉查布控大数据平台建设及应用实践和未来交通管理信息化展望三方面来召开。
首先是公安交通管理信息化的现状,我国机动车的保有量为2.71亿,其中汽车保有量1.63亿,仅次于美国,位列世界第二。而驾驶人数量3.12亿则为世界第一。我国公路通车里程达到446.39万公里,其中高速11.19万公里。这些背景数据说明我国已进入汽车社会。对于道路交通管理的需求与压力也与日俱增。
2012年起,公安部推出全国公安交通管理综合平台,在全国31个省、480多个地级市全面应用。公安交通管理主要业务全面信息化。同时,以公安交通管理综合应用平台为依托、以各地卡口系统为基础的全国机动车缉查布控系统也已应用,实现了缉查布控、预警拦截、轨迹分析、综合研判四方面的公安公路交通安全联网管控信息化。
卡口系统主要进行图像抓拍、通行记录等数据处理,并实时上传至缉查布控系统。目前,全国联网接入卡口23000多个,已汇聚上传车辆轨迹数据350亿多条,每日新增1亿多条。同时,机动车通行数据,车辆、驾驶证等基础数据,运维监管等其他数据也达到上亿条并且仍保持增长趋势。这些数据既包括常规的结构化数据,也包括图片、视频等非结构化、半结构化数据,价值巨大。
然而庞大的数据量也带来了一些问题。比如海量的数据中有百分之九十九的数据从未被使用,极低的利用率使得相关部门只能被动地通过数据解决已有问题,而无法使用现有数据进行分析、监管。究其原因,在于传统的关系型数据库面对如此庞大的数据量,无法进行高效的处理,受此限制,大部分的数据也发挥不出本来的价值。
然而现有数据量仍然在不断地增长,这一问题对数据库的革新提出了要求,传统关系型数据库向分布式数据库的转型势在必行。
方主任借此背景,引出了机动车缉查布控大数据平台建设与应用实践的成功经验。
大数据平台的建设需求在于应用大数据、云计算等技术,建设省级、部级机动车缉查布控大数据平台,汇聚全省、全国机动车轨迹信息,实现海量数据的接入、存贮,实现过车查询、全库搜索、轨迹分析、套牌分析、伴随分析、碰撞分析、区间测速等实时分析应用,实现跨部门、跨警种、跨区域信息共享和深度挖掘应用,为准确监测公路通行状况、快速缉查交通违法行为、打击各类涉车违法犯罪,不断提升道路交通安全管控水平、决策分析和社会服务能力提供全新技术实现手段。
而公安交管部门的大数据平台以大范围碰撞比对作为主要目标,是国内较早落地应用大数据平台的案例。方主任以省级平台——山东省缉查布控大数据平台案例作为主要讲解对象。
数据方面,山东省缉查布控大数据平台已在17个地市联网接入卡口1000多套,日过车记录超过1000万条(预期全面联网后1到1.5亿条每天)。全省2300多万机动车,3000多万驾驶人进入关联信息。自2014年9月正式运行起,已累积近40亿条,25TB数据。
架构上采取混合型架构,部分数据存储于HBase分布式数据库,一些关键数据存储于Oracle数据库,采用企业级发行版Hadoop软件,解决了数据实时处理,快速查询检索和多维度分析研判等问题。
方主任还提到在软件平台上,选择了星环科技的TDH产品,从2014年9月运行至今,性能稳定可靠,用户体验极佳。
基于大数据平台,公安交管部门能根据海量数据提取信息,分析轨迹,在一秒之内实现实时比对,产生预警,从而有针对性地干预、拦截。动态静态信息的碰撞比对,解决了许多过去的难题。比如逾期未年检车辆的发现与预警,无论是车主的无心之失或有意为之,都为公安部门的监管带来了极大的便利。同时还有假牌套牌分析处理与核对等,这是过去的监管系统难以顾全的。
总的来说,借助大数据TDH平台的帮助,公安交管部门相较之前更好地利用到了已有的数据,有力提升动态化、信息化执法能力,提升了对重点车辆动态监管能力,提升了对路面重点交通违法行为动态发现能力,提升了对机动车通行情况的分析研判能力,提升了对各地执法情况的监督能力,提升了对源头企业的监管能力。
而在未来,计划建立全国公安交通集成指挥平台,基于关联系统、平台信息,落成部省市三级全国联网监控。公安部交通管理科学研究所目前正依托全国公安交通管理数据中心、 云计算和大数据应用联合实验室, 开展交管大数据应用模式、技术架构、研判分析和预测模型研究,研发基于云计算技术的交通管理大数据挖掘研判系统。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20