如何SPSS质量数据集的建立与简单管理
本文主要介绍SPSS对质量信息的一般性管理,包括质量数据集的建立和简单处理、质量数据的统计描述等。SPSS质量数据集的建立与简单管理
数据集是统计数据的简单集合,一般具有大量性、差异性和同质性三个特征。数据集是统计软件研究的基本单元,是统计分析的起点。创建一个稳健、有效率的数据集对于正确的统计分析十分重要。质量信息数据集就是SPSS针对各类质量信息、数据所建立的数据集合,SPSS利用质量信息数据集对其进行统计分析。质量信息数据在这里是指生产、检验等过程中所得到的质量信息、数据,对于获得的不是数据性的信息,要进行数据化处理,转化为可以统计分析的数据,进而建立数据集。1.建立SPSS质量数据集
下面,以2004年山东省质量技术监督局名牌万里行活动所调查的关于山东各名牌产品知名度的部分数据、信息为例,建立SPSS质量数据集:⑴信息数据化,确定变量值。
问卷对知名度调查的问题是:您听说过下列哪些名牌产品?所涉及的可供选择答案共有13种产品,将产品和被调查者的年龄、文化程度及从业岗位作为变量,各取变量名。针对每一产品有“听说过”和“没有听说过”两种回答,则分别用变量值“1”和“0”来表示;对于被调查者的各变量,用“1”、“2”分别表示“男”、“女”;用“1”、“2”、“3”、“4”、“5”分别表示“高中以下”、“高中或中专”、“大专”、“大学”、“大学以上”;用“1”、“2”、“3”、“4”、“5”分别表示“机关或事业单位”、“企业”、“军人”、“农民”、“其他”。⑵变量、变量值的录入
启动SPSS后,将自动打开SPSS的数据编辑器,在其左下端有两个页标签,其中,“DataView”是数据窗口,“VariableView”是变量属性窗口,前者录入变量值,后者输入变量名并定义其各个属性。最后,SPSS用“sav”类型保存其数据集。
值得一提的是,在确定变量属性时,单击“Values”列格中的阴影方框,可以定义该变量的标签。
2. SPSS数据集的简单管理
SPSS数据集内数据的简单管理包括数据、单元格的查找,观测量的分类排序,数据文件的分类汇总和数据的选择等。这些功能主要由“Data”下拉菜单中的各个命令来完成,这与excel并没有很大的区别,并且这些功能excel也能够较好地完成。质量数据的统计描述
要对质量数据做好统计分析,首先要对这些数据进行描述性统计分析。SPSS统计软件对质量信息的描述统计分析功能主要集中在DetiveStatistics菜单中,主要包括建立质量数据频率表,质量数据的一般性统计描述、探索性分析和交叉统计等。1.建立质量数据频率表
SPSS统计软件建立数据频率表由“Analyze”菜单中“DetiveStatistics”的“Frequencies…”项来完成。具体操作如下:
打开“Analyze”菜单,选择“DetiveStatistics”中的“Fre?鄄quencies…”项,弹出“Frequencies”对话框,将两个变量选入“Variable(s)”框内。单击“Statis?鄄tics”按钮。可以弹出“Frequencies:Statistics”对话框,其中,“Per?鄄centileValues”复选框组定义了需要输出的百分位数;“Centralten?鄄dency”复选框组主要用来定义描述集中趋势的一组指标:均值(Mean)、中位数(Median)、众数(Mode)、总合(Sum);“Disper?鄄sion”复选框组用于定义标准差(Std.deviation)、方差(Variance)、全距(Range)等描述离散趋势的一组指标;“Distribution”复选框组用于定义描述分布特征的两个指标:偏度系数(Skewness)和峰度系数(Kurtosis)。点击“Statistics”对话框中的“Charts”按钮可以选择是否在输出结果中输出所要求的辅助图形,例如条形图、直方图等,本例选择饼图(Piechart)。点击“Statis?鄄tics”对话框中的“Format”按钮可以定义输出频数表的格式。最后,点击“OK”,可以得到频率表和频率饼图,如文中图一、表一所示。2.质量数据的一般性统计描述
质量数据的一般性统计描述主要是指对连续性随机变量进行的一般描述统计。这个过程既可以对变量进行描述性统计分析,列出一系列相应的统计指标,还可以将原始数据转换成标准正态评分值并以变量的形式存入数据库以供分析。这一功能是由SPSS的“Analyze”菜单中“DetiveStatistics”的“Detive…”项来完成。
例如,某一企业要统计每个车间(共两个)在一个月内所付出的质量成本,并统计预防成本、鉴定成本、内部损失成本和外部损失成本的差异,由所统计的数据建立SPSS数据文件。要求对这些数据进行一般性统计描述,得到各项所需指标,操作如下:
打开“Analyze”菜单选中“DetiveStatistics”中的“Detions…”项,则会弹出“De?鄄tives”对话框。将变量均选入“Variable(s):”框内,如果选中“Savestandardizedvaluesasvariables”复选框,则将变量的原始数据的标准正态评分存为新变量,列在后面(此例不选)。如果,点击“De?鄄tives”对话框中的“Options…”按钮,则会弹出“DetionsOp?鄄tions”对话框,在其中可以设置各项所需的统计指标。CDA数据分析师学习
数据分析咨询请扫描二维码
数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20