
如何SPSS质量数据集的建立与简单管理
本文主要介绍SPSS对质量信息的一般性管理,包括质量数据集的建立和简单处理、质量数据的统计描述等。SPSS质量数据集的建立与简单管理
数据集是统计数据的简单集合,一般具有大量性、差异性和同质性三个特征。数据集是统计软件研究的基本单元,是统计分析的起点。创建一个稳健、有效率的数据集对于正确的统计分析十分重要。质量信息数据集就是SPSS针对各类质量信息、数据所建立的数据集合,SPSS利用质量信息数据集对其进行统计分析。质量信息数据在这里是指生产、检验等过程中所得到的质量信息、数据,对于获得的不是数据性的信息,要进行数据化处理,转化为可以统计分析的数据,进而建立数据集。1.建立SPSS质量数据集
下面,以2004年山东省质量技术监督局名牌万里行活动所调查的关于山东各名牌产品知名度的部分数据、信息为例,建立SPSS质量数据集:⑴信息数据化,确定变量值。
问卷对知名度调查的问题是:您听说过下列哪些名牌产品?所涉及的可供选择答案共有13种产品,将产品和被调查者的年龄、文化程度及从业岗位作为变量,各取变量名。针对每一产品有“听说过”和“没有听说过”两种回答,则分别用变量值“1”和“0”来表示;对于被调查者的各变量,用“1”、“2”分别表示“男”、“女”;用“1”、“2”、“3”、“4”、“5”分别表示“高中以下”、“高中或中专”、“大专”、“大学”、“大学以上”;用“1”、“2”、“3”、“4”、“5”分别表示“机关或事业单位”、“企业”、“军人”、“农民”、“其他”。⑵变量、变量值的录入
启动SPSS后,将自动打开SPSS的数据编辑器,在其左下端有两个页标签,其中,“DataView”是数据窗口,“VariableView”是变量属性窗口,前者录入变量值,后者输入变量名并定义其各个属性。最后,SPSS用“sav”类型保存其数据集。
值得一提的是,在确定变量属性时,单击“Values”列格中的阴影方框,可以定义该变量的标签。
2. SPSS数据集的简单管理
SPSS数据集内数据的简单管理包括数据、单元格的查找,观测量的分类排序,数据文件的分类汇总和数据的选择等。这些功能主要由“Data”下拉菜单中的各个命令来完成,这与excel并没有很大的区别,并且这些功能excel也能够较好地完成。质量数据的统计描述
要对质量数据做好统计分析,首先要对这些数据进行描述性统计分析。SPSS统计软件对质量信息的描述统计分析功能主要集中在DetiveStatistics菜单中,主要包括建立质量数据频率表,质量数据的一般性统计描述、探索性分析和交叉统计等。1.建立质量数据频率表
SPSS统计软件建立数据频率表由“Analyze”菜单中“DetiveStatistics”的“Frequencies…”项来完成。具体操作如下:
打开“Analyze”菜单,选择“DetiveStatistics”中的“Fre?鄄quencies…”项,弹出“Frequencies”对话框,将两个变量选入“Variable(s)”框内。单击“Statis?鄄tics”按钮。可以弹出“Frequencies:Statistics”对话框,其中,“Per?鄄centileValues”复选框组定义了需要输出的百分位数;“Centralten?鄄dency”复选框组主要用来定义描述集中趋势的一组指标:均值(Mean)、中位数(Median)、众数(Mode)、总合(Sum);“Disper?鄄sion”复选框组用于定义标准差(Std.deviation)、方差(Variance)、全距(Range)等描述离散趋势的一组指标;“Distribution”复选框组用于定义描述分布特征的两个指标:偏度系数(Skewness)和峰度系数(Kurtosis)。点击“Statistics”对话框中的“Charts”按钮可以选择是否在输出结果中输出所要求的辅助图形,例如条形图、直方图等,本例选择饼图(Piechart)。点击“Statis?鄄tics”对话框中的“Format”按钮可以定义输出频数表的格式。最后,点击“OK”,可以得到频率表和频率饼图,如文中图一、表一所示。2.质量数据的一般性统计描述
质量数据的一般性统计描述主要是指对连续性随机变量进行的一般描述统计。这个过程既可以对变量进行描述性统计分析,列出一系列相应的统计指标,还可以将原始数据转换成标准正态评分值并以变量的形式存入数据库以供分析。这一功能是由SPSS的“Analyze”菜单中“DetiveStatistics”的“Detive…”项来完成。
例如,某一企业要统计每个车间(共两个)在一个月内所付出的质量成本,并统计预防成本、鉴定成本、内部损失成本和外部损失成本的差异,由所统计的数据建立SPSS数据文件。要求对这些数据进行一般性统计描述,得到各项所需指标,操作如下:
打开“Analyze”菜单选中“DetiveStatistics”中的“Detions…”项,则会弹出“De?鄄tives”对话框。将变量均选入“Variable(s):”框内,如果选中“Savestandardizedvaluesasvariables”复选框,则将变量的原始数据的标准正态评分存为新变量,列在后面(此例不选)。如果,点击“De?鄄tives”对话框中的“Options…”按钮,则会弹出“DetionsOp?鄄tions”对话框,在其中可以设置各项所需的统计指标。CDA数据分析师学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09