大数据如何助力ICU?
大数据(big data),是指无法在可承受的时间范围内,用常规软件工具进行捕捉、管理和处理的数据集合。它需要应用新的处理模式,才能成为具有更强的决策力、洞察发现力和流程优化能力的信息资产。目前,各行各业正全力提高对数据的加工能力,通过加工,实现数据的增值。医疗行业也不例外,研究者们亦正积极寻找如何从以前的丰富病例信息中挖掘出有用的线索。《华尔街日报》于今年6月深度报道了美国医疗机构在此方面的努力,它们都正致力于测量出重症监护病房在任何时间点的风险水平。
对于患者来说,重症加护病房(ICU)可能很快会成为一个不再那么可怕的地方。
医院的重症加护病房是为专门治疗重症患者而设,其治疗成功率高低不一。如今,研究人员正在从大量重症加护病房数据中寻求线索,以帮助患者取得更好的疗效。
研究表明,(美国)每年都有超过500万患者进入重症监护病房,其中死亡率为10%?29%。虽然有些患者的死亡不可避免,但有些患者是死于由设备和治疗感染引起的可避免的并发症。其他并发症包括血液凝块和过度镇静和长时间不动引起的精神错乱。
在过去,重症监护病房在核对清单等较为基础的技术方面曾成功减少了患者的风险。遵循患者护理步骤清单,能够防治因呼吸机留置过长引起的肺炎,或者导管和各种软管所造成的感染。
数据时代
现在,一些医院正在测试应用大数据的方法。通过对比,对多年来多个来源的医疗记录进行筛选,包括那些可能永远不会被纳入到单一分析法中的数据,以找到之前未知的相关性,从而发现更多的问题点,和更多可能的解决方案。
“清单核对工作可以作用于可预见的风险,但那些不太可预测的突发事件才是我们最关心的问题。”,哈佛医学院贝斯以色列女执事医疗中心(BIDMC)的首席质量官兼高级副总裁Kenneth Sands如是说。该医疗中心正在与来自麻省理工学院的集成系统科学家和APTIMA公司的人性因素专家通力合作,组建项目团队“危险状态”,致力于测量出特定重症监护病房在任何时间点的风险水平。
BIDMC拥有7间重症加护病房,其中包括外科手术和冠状动脉患者用病房。通过分析2012至2014年间所有重症加护病房中患者的数据,医院项目团队界定出了会增加风险的各种情况,如大量收治患者、重症患者的数量增多、重症加护病房中起用护理经验不足一年护士的比例增高、以及在重症监护病房中患者-护士比过高等等。
“我们正在使用大家此前想象不到的数据来预测重症监护病房中的危害。”BIDMC的麻醉、重症护理和疼痛医学临时主席Daniel Talmor说,“例如,人们一般不会把护士的经验水平计入风险”。
项目团队还在风险状态的过程中和之后的环节,发现了30项危害,如出血、用药错误、心跳骤停、出院后再次入住重症加护病房、跌倒和沟通中的错误等。
由该团队开发的应用程序能自动从电子病历类医学专用软件中抓取数据,并允许医生和护士输入有关特定患者与病房相关的额外问题。然后利用一种可视“仪表盘”计算风险评分,并将其实时显示到重症加护病房工作人员的显示器和手持设备上。
Sands博士说,“目前,我们已经可以对即将进入危险状态的患者进行提前预警。”
Patricia Folcarelli是该院的护士兼患者安全高级主管。她讲到,重症加护病房可以通过改变人员编制、推迟选择性程序、或将患者从负荷过大的重症加护病房中转移到负担较小的,而不是仅仅靠着一张可能并不适用于每一个患者的一般清单。因此,该团队还正在开发“能针对具体情况”的个性化清单,侧重于单个患者的需求。
BIDMC的“危险状态”团队是一个由戈登和贝蒂?摩尔基金会资助的项目。该基金会还为其他数个类似领域的团队提供了研发资金,旨在帮助医院改善重症护理的效果。受资助的其他团队包括位于巴尔的摩的约翰·霍普金斯大学医学院,他们正在通过对当前的患者数据与历史数据相对比,进行快速分析和诊断,从而提高重症加护病房的效能。约翰·霍普金斯大学医学院患者安全和质量部的高级副总裁Peter Pronovost表示,重症加护病房中的医疗设备不能互联,使得医生和护士不得不从各个医疗设备中拼凑出患者数据,这不仅浪费人力物力,还有可能会将患者置于危险境地。
“我们需要一种能将病历数据与设备相连的软件,以预测可能危害到患者的风险,并根据风险推荐相应的治疗方法,显示出治疗方法是否已经实施,然后监控患者的情况,”Pronovost博士如是说。
建立连接
约翰·霍普金斯大学指派了一位应用物理实验室专家来帮助它设计一个名叫“浮现项目”的系统,以此获取来自电子记录和床头传感器的数据,并显示个别患者是否应该接受治疗,以及防治相关并发症的治疗方法。
Alan Ravitz是该项目的工程师主管。他介绍到,项目团队先向重症加护病房的工作人员仔细询问了其最需要的信息,以及信息应当如何显示。护士Rhonda Wyskiel建议显示界面设计成表盘状,这也成为了病房中“危害显示器”和护理人员平板电脑设备的基础设计。显示器能提醒工作人员何时应给予患者一定的护理,在工作人员没有按时提供护理时用处尤为巨大。其界面为七色表盘,红色表示迫在眉睫的危险,黄色为发展中的问题,绿色则为已经完成的任务。
显示器中安装的其中一个传感器能持续标记患者的病床角度。研究表明,当重症加护病房的病床保持在30度角时,可以预防患者因呼吸机罹患肺炎。因此,如果护士在改变了病床角度后忘记将其重新调回到30度,显示器的该部分则会变为红色。此外,显示器中的其他传感器还包括一个可以挂接到静脉注射杆的装置,可以测量出患者行走的距离。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28