作者:丁点helper
来源:丁点帮你
线性回归,可能是统计学上运用最广泛的一类方法了,之所以说它是一类方法,是因为它包括了我们熟知的各种模型:简单线性回归、多重线性回归、Logistic回归等等。
线性回归运用这么广泛很大程度在于它的内在逻辑十分简单。一般情况下,就是找Y的影响因素或者说是衡量自变量(X)对因变量(Y)的影响程度,即便不理解其中的数学计算也可以很容易地凭借各种软件找到我们想要的结果。
确实如此,线性回归,尤其是一般线性模型(一个Y,多个X)使用起来没什么障碍,但大家是否完全理解清楚了所有应该掌握的内容(非数学计算)可能有待思考,这个系列的文章我们以“线性回归”为主题,希望能让大家对这个问题的认识能再全面一丁点。
回归一词的来源
初学的小伙伴有没有思考过,为什么叫“回归”?
回归,这个词,英文叫“Regression”,最早出现在1886年英国遗传学家Francis Galton发表的一篇研究身高的论文(”Regression towards mediocrity in hereditary stature”),他发现子女的身高会向整个群体身高的均值回归。
什么叫均值回归?
大家是否想过人类生活繁衍了无数代,但总体来看,成年男子的身高并没有发生太大的变化,基本稳定在1米6至1米8(暂不考虑人种差异)。
这种现象很大程度就是因为存在均值回归,即身高较高的父母虽然子女也比较高,但往往比父母矮;身高较矮的父母,其子女的身高往往比父母高。
所以,这里的均值回归,就是指子代的身高会向整个人类的平均身高靠拢的趋势。
换句话讲:姚明的孩子大概率会比姚明矮、潘长江的孩子大概率会比潘长江高。
因此,正是因为身高的均值回归现象(向整个群体的平均身高回归),整个人类的身高水平才能比较均衡。
倘若,个子高的父亲生的孩子比自己还高,而个子矮的父亲生的孩子比自己还矮,那么整个人类的身高就会呈现“两极分化”的态势:要么特别高、要么特别矮。
由此来看,最早的“回归”实际上描述的是一种“现象“,即人们的身高不会无限制地上升或降低,而是会朝着平均水平回归。
当然,这种现象并不仅限于“身高”,我们身边的很多现象都有向均值回归的趋势。比如考试成绩,一般来讲,成绩很难持续提升或下降,而是大概率呈现波动状态,维持在一个平均水平。
而现如今,回归更多是指代一种“方法”,即研究两个或两个以上变量相关关系的方法。以一个变量为因变量(Y),另一个或一些变量为自变量(X),构建一个方程——左边为Y,右边为X,通过计算X的系数来估计X对Y的影响。
比如通过父母的平均身高来估计子女的身高。我们以父母的平均身高为“X”,以孩子的身高为“Y”,然后探讨这两个变量之间的线性关系,这就是一个典型的回归模型。
Francis Galton的研究——父母平均身高与子女身高的回归线
区分总体和样本
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
因为无论做哪种统计分析,我们获得数据几乎永远都是”样本数据“:统计量的大小仅仅反映了这组数据的情况。
比如,我们想考察”教育年限(X)“与”收入(Y)“是否存在相关关系。通过抽样,获得了两组数据(例如1000名对象的教育年限和目前的月收入),得出相关系数为0.8。
但是,这个相关系数仅仅反映了这1000名对象的情况,对于所有人(即我们研究的总体),这个相关关系是否仍然成立?
所以,我们必须要进行检验,即相关系数的假设检验。因为我们关心的是相关关系的有无,所以,最主要的是检验总体相关系数是否为0(H0假设)。因为”0“代表无关,只要不为”0“,就证明总体数据的相关关系存在。
同样的,我们也可以用获得的这1000名对象的数据,做回归分析,以”教育年限“(X)为自变量,以”月收入“(Y)为因变量,得到回归方程:Y = 2000+200X+ε
这里,我们最关注的是X的回归系数——200。
这里的200,意味着教育程度每增加一年,月收入增加200元。
但是,这个关系也只是反映了这1000名研究对象的情况,对于所有人,是否教育程度每增加一年,月收入都会增加200元?
这就有待进行假设检验,同样我们也是关注:总体回归系数是否为0。
因此,在接触回归的第一步,我们需要明确,自己手头上数据所获得的回归方程仅仅是一个样本的情况。
如果重复抽样,再进行相同的回归分析,就会得到另一个回归方程。
也就是说,目前得到的这个回归方程(以及其中的回归系数),它是可变的,是一个样本值,随着样本的变化而变化。也正因为此,我们才需要对回归系数进行检验。
实际上,教科书对总体回归和样本回归也有着清晰地区分,就连方程的术语和符号也不例外:
所以,”戴帽子“(^)的都是样本值,或者说是总体的估计值。
理清了这一点,才能更好地搞懂回归系数的假设检验等问题。
最后出个题目考考大家,当我们做回归系数(β)的假设检验时,下面A、B两种写法哪种正确:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06在备考 CDA 考试的漫漫征途上,拥有一套契合考试大纲的优质模拟题库,其重要性不言而喻。它恰似黑夜里熠熠生辉的启明星,为每一 ...
2025-03-05“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关 ...
2025-03-04以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-04