作者:丁点helper
来源:丁点帮你
线性回归,可能是统计学上运用最广泛的一类方法了,之所以说它是一类方法,是因为它包括了我们熟知的各种模型:简单线性回归、多重线性回归、Logistic回归等等。
线性回归运用这么广泛很大程度在于它的内在逻辑十分简单。一般情况下,就是找Y的影响因素或者说是衡量自变量(X)对因变量(Y)的影响程度,即便不理解其中的数学计算也可以很容易地凭借各种软件找到我们想要的结果。
确实如此,线性回归,尤其是一般线性模型(一个Y,多个X)使用起来没什么障碍,但大家是否完全理解清楚了所有应该掌握的内容(非数学计算)可能有待思考,这个系列的文章我们以“线性回归”为主题,希望能让大家对这个问题的认识能再全面一丁点。
回归一词的来源
初学的小伙伴有没有思考过,为什么叫“回归”?
回归,这个词,英文叫“Regression”,最早出现在1886年英国遗传学家Francis Galton发表的一篇研究身高的论文(”Regression towards mediocrity in hereditary stature”),他发现子女的身高会向整个群体身高的均值回归。
什么叫均值回归?
大家是否想过人类生活繁衍了无数代,但总体来看,成年男子的身高并没有发生太大的变化,基本稳定在1米6至1米8(暂不考虑人种差异)。
这种现象很大程度就是因为存在均值回归,即身高较高的父母虽然子女也比较高,但往往比父母矮;身高较矮的父母,其子女的身高往往比父母高。
所以,这里的均值回归,就是指子代的身高会向整个人类的平均身高靠拢的趋势。
换句话讲:姚明的孩子大概率会比姚明矮、潘长江的孩子大概率会比潘长江高。
因此,正是因为身高的均值回归现象(向整个群体的平均身高回归),整个人类的身高水平才能比较均衡。
倘若,个子高的父亲生的孩子比自己还高,而个子矮的父亲生的孩子比自己还矮,那么整个人类的身高就会呈现“两极分化”的态势:要么特别高、要么特别矮。
由此来看,最早的“回归”实际上描述的是一种“现象“,即人们的身高不会无限制地上升或降低,而是会朝着平均水平回归。
当然,这种现象并不仅限于“身高”,我们身边的很多现象都有向均值回归的趋势。比如考试成绩,一般来讲,成绩很难持续提升或下降,而是大概率呈现波动状态,维持在一个平均水平。
而现如今,回归更多是指代一种“方法”,即研究两个或两个以上变量相关关系的方法。以一个变量为因变量(Y),另一个或一些变量为自变量(X),构建一个方程——左边为Y,右边为X,通过计算X的系数来估计X对Y的影响。
比如通过父母的平均身高来估计子女的身高。我们以父母的平均身高为“X”,以孩子的身高为“Y”,然后探讨这两个变量之间的线性关系,这就是一个典型的回归模型。
Francis Galton的研究——父母平均身高与子女身高的回归线
区分总体和样本
在刚开始接触统计的时候,我们会经常强调一对概念——总体和样本。但是,这个问题在做回归时可能会被忽略。
因为无论做哪种统计分析,我们获得数据几乎永远都是”样本数据“:统计量的大小仅仅反映了这组数据的情况。
比如,我们想考察”教育年限(X)“与”收入(Y)“是否存在相关关系。通过抽样,获得了两组数据(例如1000名对象的教育年限和目前的月收入),得出相关系数为0.8。
但是,这个相关系数仅仅反映了这1000名对象的情况,对于所有人(即我们研究的总体),这个相关关系是否仍然成立?
所以,我们必须要进行检验,即相关系数的假设检验。因为我们关心的是相关关系的有无,所以,最主要的是检验总体相关系数是否为0(H0假设)。因为”0“代表无关,只要不为”0“,就证明总体数据的相关关系存在。
同样的,我们也可以用获得的这1000名对象的数据,做回归分析,以”教育年限“(X)为自变量,以”月收入“(Y)为因变量,得到回归方程:Y = 2000+200X+ε
这里,我们最关注的是X的回归系数——200。
这里的200,意味着教育程度每增加一年,月收入增加200元。
但是,这个关系也只是反映了这1000名研究对象的情况,对于所有人,是否教育程度每增加一年,月收入都会增加200元?
这就有待进行假设检验,同样我们也是关注:总体回归系数是否为0。
因此,在接触回归的第一步,我们需要明确,自己手头上数据所获得的回归方程仅仅是一个样本的情况。
如果重复抽样,再进行相同的回归分析,就会得到另一个回归方程。
也就是说,目前得到的这个回归方程(以及其中的回归系数),它是可变的,是一个样本值,随着样本的变化而变化。也正因为此,我们才需要对回归系数进行检验。
实际上,教科书对总体回归和样本回归也有着清晰地区分,就连方程的术语和符号也不例外:
所以,”戴帽子“(^)的都是样本值,或者说是总体的估计值。
理清了这一点,才能更好地搞懂回归系数的假设检验等问题。
最后出个题目考考大家,当我们做回归系数(β)的假设检验时,下面A、B两种写法哪种正确:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31